您好,欢迎来到爱学范文!

当前位置:爱学范文网>>工作范文>>工作总结范文>>二次函数的知识点总结

二次函数的知识点总结

标签:
时间:

二次函数的知识点总结

各位同学们,大家好哦,小编为大家带来了二次函数的知识点总结哦,一起看看吧!

二次函数的知识点总结

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的'增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x-x|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

推荐阅读:

    想了解更多工作范文的资讯,请访问:工作总结范文
    下载文档

    看过《二次函数的知识点总结》的人还看了以下文章

    延伸阅读

    敬爱的党组织: 我志愿加入中国共产党,愿意为共产主义事业奋斗终身。 中国共产党是中国工人阶级的先锋队,同时是中国人民和中华民族的先锋队,是中国特色社会主义事业的领导核心,代表中国先进生产力的发展要求,

    疫情,汉语词语,指疫病的发生和发展情况。较大范围内出现的较大型疫情有重症急性呼吸综合征(SARS)、甲型H1N1流感及新型冠状病毒肺炎(CoronaVirusDisease2023,COVID-19)

    《&ldquo;精彩极了&rdquo;和&ldquo;糟糕透了&rdquo;》这篇课文的教学引导学生从父母对孩子的评价中体会到父母对孩子的爱。以下是百分网小编精心为大家整理的《&ldquo;精彩极了&

    20xx年以来,我们在县委、县政府的正确领导下,认真贯彻落实全县建筑经济工作会议精神,扎实开展&ldquo;大脚板走一线,小分队破难题&rdquo;抓落实专项行动,全力打造XX建筑管理铁军,集中做好企

    全面从严治党是党的十八大以来党中央作出的重大战略部署,是“四个全面”战略布局的重要组成部分。全面从严治党,基础在全面,关键在严,要害在治下面是小编精心整理的20xx年领导班子成员分管领导全面从严治党

    心有所指,梦终会圆。不忘初心,牢记使命。历史没有终结,也不可能被终结,肩负使命与梦想同行的人,终会赢得光明的未来。下面是大家创业网为大家整理的不忘初心1000字演讲稿3篇,供大家参考。不忘初心1000

    下面是小编为大家整理的有梦想真好初三作文,供大家参考。在学习、工作乃至生活中,大家都接触过作文吧,通过作文可以把我们那些零零散散的思想,聚集在一块。那么问题来了,到底应如何写一篇优秀的作文呢?下面是小

    体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面是小编帮大家整理的优秀心得体会范文,供大家参考

    下面是小编为大家整理的安全最新演讲稿,供大家参考。演讲稿是一种实用性比较强的文稿,是为演讲准备的书面材料。在当下社会,演讲稿的使用越来越广泛,为了让您在写演讲稿时更加简单方便,以下是小编整理的关于安全

    下面是小编为大家整理的环保手抄报,搜一篇环保手抄报(3篇)(2023年),供大家参考。人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆