您好,欢迎来到爱学范文!

当前位置:爱学范文网>>工作范文>>工作总结范文>>初二函数知识点总结

初二函数知识点总结

标签:
时间:

初二函数知识点总结

在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.下面是小编为大家整理的初二函数知识点总结,欢迎参考!

初二函数知识点总结 篇1

一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

函数的图象

由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.

画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

一次函数y=kx+b(k,b为常数,k≠0)的性质

(1)k的正负决定直线的倾斜方向;

①k>0时,y的值随x值的增大而增大;

②k﹤O时,y的值随x值的增大而减小.

(2)|k|大小决定直线的倾斜程度,即|k|越大

①当b>0时,直线与y轴交于正半轴上;

②当b<0时,直线与y轴交于负半轴上;

③当b=0时,直线经过原点,是正比例函数.

(4)由于k,b的符号不同,直线所经过的象限也不同;

①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);

②如图所示,当k>0,b<O时,直线经过第一、三、四象限(直线不经过第二象限);

③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);

④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).

(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.

正比例函数y=kx(k≠0)的性质

(1)正比例函数y=kx的图象必经过原点;

(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;

(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.

点P(x0,y0)与直线y=kx+b的图象的关系

(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;

(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.

例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.

确定正比例函数及一次函数表达式的条件

(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.

(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.

待定系数法

先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.

用待定系数法确定一次函数表达式一般步骤

(1)设函数表达式为y=kx+b;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k与b的值,得到函数表达式.

思想方法小结(1)函数方法.(2)数形结合法.

知识规律小结(1)常数k,b对直线y=kx+b(k≠0)位置的影响.

①当b>0时,直线与y轴的正半轴相交;

当b=0时,直线经过原点;

当b﹤0时,直线与y轴的负半轴相交.

②当k,b异号时,直线与x轴正半轴相交;

当b=0时,直线经过原点;

当k,b同号时,直线与x轴负半轴相交.

③当k>O,b>O时,图象经过第一、二、三象限;

当k>0,b=0时,图象经过第一、三象限;

当b>O,b<O时,图象经过第一、三、四象限;

初二函数知识点总结 篇2

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的.方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

初二函数知识点总结 篇3

一.定义

1.全等形:形状大小相同,能完全重合的两个图形。

2.全等三角形:能够完全重合的两个三角形。

二.重点

1.平移,翻折,旋转前后的图形全等。

2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。

3.全等三角形的判定:

SSS三边对应相等的两个三角形全等[边边边]

SAS两边和它们的夹角对应相等的两个三角形全等[边角边]

ASA两角和它们的夹边对应相等的两个三角形全等[角边角]

AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]

HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]

4.角平分线的性质:角的平分线上的点到角的两边的距离相等.

5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.

初二函数知识点总结 篇4

作法

(1)列表:表中给出一些自变量的值及其对应的函数值。

(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。

(3)连线:按照横坐标由小到大的顺序把描出的各点用平滑曲线连接起来。

性质

(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

k,b决定函数图像的位置:

y=kx时,y与x成正比例:

当k>0时,直线必通过第一、三象限,y随x的增大而增大;

当k<0时,直线必通过第二、四象限,y随x的增大而减小。

y=kx+b时:

当k>0,b>0,这时此函数的图象经过第一、二、三象限;

当k>0,b<0,这时此函数的图象经过第一、三、四象限;

当k<0,b>0,这时此函数的图象经过第一、二、四象限;

当k<0,b<0,这时此函数的图象经过第二、三、四象限。

当b>0时,直线必通过第一、三象限;

当b<0时,直线必通过第二、四象限。

特别地,当b=0时,直线经过原点O(0,0)。

这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:

①在同一平面

②两条数轴

③互相垂直

④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:

①结果必须是整式

②结果必须是积的形式

③结果是等式

④因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:

①系数是整数时取各项最大公约数。

②相同字母取最低次幂

③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。

②确定商式

③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

初二函数知识点总结 篇5

1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。

例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____

分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)2-2。

2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。

二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。

分析:y=x2-2x-3=(x-1)2-4,a值为1,其顶点坐标为(1,-4),若关于x轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(x-1)2+4;若关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(x+1)2-4。

3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180°的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。

例3.将抛物线y=x2-2x+3绕其顶点旋转180°,则所得的抛物线的函数解析式为________

分析:y=x2-2x+3=(x-1)2+2中,a值为1,顶点坐标为(1,2),抛物线绕其顶点旋转180°后,a值为-1,顶点坐标不变,故解析式为y=-(x-1)2+2。

推荐阅读:

    想了解更多工作范文的资讯,请访问:工作总结范文
    下载文档

    看过《初二函数知识点总结》的人还看了以下文章

    延伸阅读

    银行授权委托书3篇委托书具有不可撤销性,委托人不得以任何理由反悔委托事项。在现实社会中,我们在很多事务中使用委托书的情况与日俱增,如何写一份恰当的'委托书呢?以下是小编收集整理的银行授权委托书3篇,欢

    客服月工作总结篇1  在送旧迎新之际,物业公司在回顾20xx年工作开展的基础上,总结经验,找出不足,以更加务实的态度,积极配合集团经营的战略方针,细化管理,从内 部挖掘潜力,向管理要效益,更加严格要求

    在现代的建筑施工管理中,为了提高施工管理项目的效益,就必须要对施工管理项目的进度、成本、质量、安全进行科学合理的控制,今天爱学范文网小编给大家带来了施工管理个人工作总结,希望能够帮助到大家。施工管理个

    以下是为大家整理的关于链家租房合同的文章6篇,欢迎大家参考查阅!第一篇:链家租房合同出租人(甲方):联系地址:联系电话:承租人(乙方):联系地址:联系电话:身份证号:身份证号:根据《中华人民共和国合同

    个人简历是宣传和包装个人求职者最有效的工具。以下是完整的样文集分享的咨询师简历样本,希望对你有用。顾问简历范本(一)个人基本信息姓名:XXX性别:女性籍贯:XXX民族:汉族政治观:共青团成员出生日期:

    尊敬的XX领导:您好!我是XX理工大学20XX毕业生,材料物理专业。在校表现出色,专业知识扎实,获得三等、二等奖学金,具备各种技能。熟悉电脑和各种办公软件,网络架构和C语言编程。通过cet4和cct2

    不动产赠与协议书(附负担)(通用29篇)不动产赠与协议书(附负担)篇1甲方(签章):乙方(签章):有效证件号码:甲乙双方依照有关法律规定,经协商一致,订立扶养赠与协议,共同遵守执行。第一条赠与标的物:

    当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学

    周记400字刚开学初一,意味着我们不再玩那些童年会玩的游戏;初一,意味着我们要更加认真的学习;初一,意味着我们要渐渐的抛开幼稚去学着成长。初一,是学习的新开始,也是成长的新开始。下面是小编精心收集的周记4

    小学生关于环保从我做起演讲稿(3篇)小学生关于环保从我做起演讲稿篇1我们每个人都离不开水,水能维持一个人正常生活,人们每天需要5千克水,我们人体内水的含量达90%以上,每天吃饭食物都是通过水来消化