打开文本图片集
摘 要:设计了一款低功耗自适应偏置无片外电容低压差线性稳压器.为了解决由于设计和工艺中存在不匹配造成每级误差放大器不同类型输入管的反型系数在自适应偏置下变化不同步问题,提出了由循环折叠共源共栅放大器和跨导提高放大器构成的误差放大器结构,同时采用推挽输出结构提高了对功率管的驱动能力.该无片外电容低压差稳压器采用嵌套密勒补偿和自适应偏置,解决了轻负载时的稳定性问题,同时提高了轻负载下的电流效率.芯片采用SMIC 0.18 μm CMOS工艺设计,版图面积为0.019 9 mm2.蒙特卡罗后仿真的结果表明,其负载电流范围为10 μA~100 mA,最大负载寄生电容为100 pF,最小负载下静态电流为1 μA,负载调整率和电源调整率分别为3.5 μV/mA和0.372 mV/V.设计的低压差稳压器具有低功耗、无片外电容、面积小的优点,是片上系统中电源管理知识产权核的良好选择.
关键词:线性稳压器;低功耗;无片外电容;自适应偏置
中图分类号:TN402 文献标志码:A
Abstract:A lowpower adaptively biased outputcapacitorfree lowdropout linear regulator was designed. In order to tackle the problem that the inversion coefficients of different types of input transistors in each error amplifier stage may vary asynchronously under adaptive bias caused by mismatches in the design and process, an error amplifier comprised of the recycling folded cascode amplifier and transconductanceboosting amplifier was proposed. The driving ability for the power transistor was improved by the adopted pullpush output structure. Nested Miller compensation and adaptive bias were used to solve the stability problem of outputcapacitorfree lowdropout regulator and improve the current efficiency at light loads. The regulator chip was implemented in SMIC 0.18 μm CMOS process with a layout area of 0.019 9 mm2. The Monte Carlo postsimulation results show that the load current range is 10 μA~100 mA with the maximum load parasitic capacitance of 100 pF, and the quiescent current is 1 μA at the minimum load condition. The load regulation and line regulation are 3.5 μV/mA and 0.372 mV/V, respectively. The designed lowdropout regulator has the merits of low power consumption, no offchip capacitor and small area, which indicates that it is a good choice as intellectual property core of the power management for the system on chip.
Key words:linear regulator; low power consumption; outputcapacitorfree; adaptive bias
低压差线性稳压器,如图5所示.其供电电压范围是1.4~2 V,输出电压为1.2 V,输出负载电流范围是10 μA~100 mA.
为了充分考虑工艺制程变化和器件失配对电路带来的影响,特别是轻负载下电路中MOS管工作在亚阈值区,对电路的瞬态特性进行了蒙特卡罗后仿真.图10是针对电源瞬态响应特性进行了300次蒙特卡罗后仿真的结果,在100 mA负载和100 pF负载寄生电容条件下,供电电压从1.4~1.8 V以1 μs的时间阶跃变化,LDO输出上冲样本均值(Mean)和标准差(Std Dev)分别为23.82 mV和1.44 mV,输出下冲样本均值和标准差分别为24.94 mV和1.80 mV.图11和12是在1.8 V供电电压下重负载和轻负载时针对负载瞬态响应特性进行了300次蒙特卡罗后仿真的结果.负载电流从1~100 mA以1 μs的时间阶跃变化,LDO输出上冲的样本均值和标准差分别是81.39 mV和3.33 mV,下冲的样本均值和标准差分别是83.32 mV和5.14 mV;从10 μA~1 mA以1 μs的时间阶跃变化,LDO输出上冲的样本均值和标准差分别是133.2 mV和1.61 mV,下冲的样本均值和标准差分别是162.37 mV和0.64 mV.瞬态响应特性蒙特卡罗后仿真的结果表明LDO具有很好的鲁棒性,能够稳定地工作,为负载提供稳定的工作电压.
表2是其它文献中LDO电路与本文设计电路的性能比较.相比文献. Beijing: Science Press, 2012:19-20,71-73. (In Chinese)
. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007,54(10):922-926.
// 2008 IEEE International SolidState Circuits Conference (ISSCC), Digest of Technical Papers. San Francisco, USA: IEEE,2008:442-626.
. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010,57(5):1017-1028.
. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012,59(5):1119-1131.
LEUNG K N, MOK P K T. Analysis of multistage amplifierfrequency compensation . Netherlands: Springer, 2006:1-49,263-290.
查看全文
false