您好,欢迎来到爱学范文!

当前位置:爱学范文网>>党团范文>>公文范文>>数学高中知识点总结大全

数学高中知识点总结大全

标签:时间:

下面是小编为大家整理的数学高中知识点总结大全(最新)(全文完整),供大家参考。

数学是一门基础性的科学,学数学就是在学一种思维体系,在日常教导孩子的过程中也要注重这一点。下面小编为大家带来数学高中知识点总结大全,希望大家喜欢!

数学高中知识点总结

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.

2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值).

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;

(2)求导数f(x);

(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

(4)检查f(x)的符号并由表格判断极值.

3.求函数的值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值.函数在定义域内的极值不一定,但在定义域内的最值是的.

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值.

4.解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域.

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0.

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0.

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0.

5.导数在实际生活中的应用:

实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明.

数学高中必背知识点归纳

一、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项)当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=

Sn=

Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式:
an= a1qn-1an= akqn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn=

Sn=

二、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则

3、等比数列{an}中,若m+n=p+q,则

4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

10、三个数成等比数列的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

数学高中重点知识点复习

空间两条直线只有三种位置关系:平行、相交、异面。

按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp。空间向量法。

两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法。

若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;

(2)没有公共点——平行或异面。

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

空间向量法(找平面的法向量)

规定:

a、直线与平面垂直时,所成的角为直角;

b、直线与平面平行或在平面内,所成的角为0°角。

由此得直线和平面所成角的取值范围为[0°,90°]。

最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。

三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

推荐阅读:

    想了解更多党团范文的资讯,请访问:公文范文
    下载文档

    看过《数学高中知识点总结大全》的人还看了以下文章

    延伸阅读

    尊敬的各位嘉宾员工朋友们:“故年随夜尽,初春逐晓生”。在2022兔年新春即将来临之际,我们在这里欢聚一堂,共同庆祝过去一年中取得的辉煌成就,共同展望未来美好的愿景。借此机会,我代表金象集团党委、董事会

    想必大家都没听过《笑猫日记》这个书的系列吧!既然没听过,我就给你们讲讲“笑猫日记”中的“蓝色兔耳朵草”吧!  这本书的主角是笑猫,一只非同寻常的男猫。有一天,笑猫的“爱猫”虎皮猫因天天到钟楼敲钟为

    借款协议合同范本合同编号:_________年_________字第_________号借款人:_________住所(地址):_________法定代表人:_________贷款人:________

    自查自纠报告是一个单位或部门在一定的时间段内对执行某项工作中存在的问题的一种自我检查方式的报告文体。 以下是为大家整理的关于违规收送礼金问题个人自查自纠报告【八篇】,欢迎品鉴!违规收送礼金问题个人自查

    医院文化建设质量将直接、明显影响到医院的收诊率和收益性。今天学习啦小编给大家为您整理了医院试用期个人总结范文,希望对大家有所帮助。医院试用期个人总结范文范文一经过三年纸上谈兵式的理论学习,终于盼来了上

    读完了柔石先生笔下的这篇《为奴隶的母亲》后,我的心情逐渐地变得沉重起来。在那一个腐朽没落的旧社会,封建制度的压迫下,使一位本分老实,善良的母亲被迫与自己的儿子分开。即使想拒绝却也无能为力,无可奈何……

    栏目小编特地为大家精心收集和整理了“元宵节公司向客户祝福语”,请阅读后分享你的朋友。月亮,元宵,映衬着你的欢笑,正月十五元宵节就要到了。农历正月十五是“元宵节”,此节日民间有挂灯、打灯、观灯等习俗,故

    中国共产党全国代表大会和中央委员会是中国共产党的最高领导机关。以下是为大家整理的关于河南省党代会精神心得体会2023年的文章3篇,欢迎品鉴!河南省党代会精神心得体会2023年篇1“知为行始

    光阴的迅速,一眨眼就过去了,很快就要开展新的工作了,来为今后的学习制定一份计划。计划怎么写才能发挥它最大的作用呢?以下我给大家整理了一些优质的计划书范文,希望对大家能够有所帮助。生产部年终总结和工作计

    风险小、升值快、格调高,艺术品投资以其独特的魅力越来越被人们关注。可观的经济效益和高雅的情趣,使艺术品具有其他投资工具难以比拟的优势。将艺术品作为资产配置在西方已经盛行多年,在一些发达国家,艺术品作为