知识要点:
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);
2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)补集:CUA={x|xA但x∈U}
注意:①?A,若A≠?,则?A;
②若,,则;
③若且,则A=B(等集)
知识点汇总1、集合的概念集合中的元素具有确定性、互异性和无序性,其中互异性的应用比较广泛,是重点。互异性,即集合中的元素互不相同。何时验证互异性:用列举法表示的集合,当集合中的元素含有字母的时候,求出字母的值后,一定要验证互异性。验证的方法是:把字母的值带入集合,如果集合中有相同的元素,则此值不合题意,应舍去,反之,此值符合题意。2、常用数集及记法N表示自然数集;N*或N+表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集。3、元素与集合间的关系对象a与集合M间的关系是:若a在集合M中,则a属于M,若a不在集合M中,则a不属于M。4、集合的表示法①列举法:把集合中的元素一一列举出来,写在一个大括号内,就表示一个集合,例如集合:{1,2,3,4}。②描述法:{代表元素|代表元素满足的条件},例如集合:{x|x>0}。遇到描述法表示的集合,一定要先弄明白代表元素的含义。例如:集合{x|ax﹣1=0},代表元素是x,x是方程ax﹣1=0中的未知数,所以这个集合中的元素就是方程ax﹣1=0的解。③图示法:用数轴和韦恩图来表示集合,常在需要使用数形结合的解题过程中使用。5、集合的分类含有有限个元素的集合叫有限集;含有无限个元素的集合叫无限集;不含有任何元素的集合叫空集。
教案:
一、教学资源分析
课程标准考试说明:
1.了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号。
2.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
教材分析:
集合是中学数学的一个重要的基本概念,集合语言是现代数学的基本语言.在小学数学中,就渗透了集合的初步知识,到了初中,更进一步应用集合的语言表示有关的数学对象。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。把集合的知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念时,使学生不仅把函数看成变量间的依赖关系,同时还会用集合与对应的语言刻画函数。
高中数学只将集合作为一种语言来学习,让学生学会使用最基本的集合语言表示有关的数学对象,发展运用集合语言进行交流的能力。难理解的内容是集合的描述法的含义,加强用自然语言对描述法表示的集合的理解,多练多点评反思。
教辅资源:
课程标准,指导意见,网上材料,教师参考书,幻灯片,白板,微课等。
二、教学目标分析
知识目标:
(1)通过整理电脑桌面,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性、互异性、无序性;
(4)会用集合语言表示有关数学对象;会用适当的方法表示集合
能力目标:
培养学生合作学习能力和运用所学知识解决实际问题的能力;并通过自己举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义。
情感目标:
使学生感受数学的简洁美与和谐统一美,培养学生独立思考、敢于创新、勇于探索的科学精神,激发学生学习数学的兴趣,从而实现情感、态度、价值观方面的培养目标。
2学情分析
三、教学问题诊断
对学生而言,集合是进入高中以后的第一节课,也是抽象的概念,学生不易理解,从初中数学的感性认识走到高中数学的理性思考,是一个大的转变,应该从对集合的学习有一个新的开始。
针对学生的认知水平,在教学过程中设计活动环节,让学生亲身体验到集合的含义,以活动为中心展开与学生一起体验集合中的元素是什么,集合的表示方法,元素与集合的关系等等。
四、教法特点
1、教学方法与手段
本节课采用“递进式”的教学方法使知识点自然呈现、层层深入。并利用白板教学平台,从具体到抽象,从感性到理性,由浅入深.从学生已经熟悉的电脑桌面的整理入手,逐步呈现集合的概念、集合的表示方法,产生初步认识。采用教师引导,学生自主探索、观察、归纳的教学方式。利用多媒体教学设备辅助教学,充分调动学生探究数学奥秘的积极性。
2、学法指导
根据本节课的内容和学生的认知基础,倡导学生采取自主探究、合作交流的学法;同时鼓励学生积极思考、总结出集合中元素的三大特征,通过对列举法和描述法的对比,选择恰当的方法来表示集合。从而培养学生的观察能力、归纳能力、类比能力、和科学严谨的探索精神。
五、重点难点
教学重点:
集合的含义与表示方法
教学难点:
集合表示方法的恰当选择
集合的概念教案2【教学目标】
1.了解集合、元素的概念,体会集合中元素的三个特征;
2.理解集合的作用,会根据已知条件构造集合;
3.理解元素与集合的“属于”和“不属于”关系,并会正确表达;
4.掌握常用数集及其记法;
5.了解数合的含义,记忆基本数集的符号;
6.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.
【导入新课】
一、实例引入:
军训前学校通知:8月21日上午8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.
二、问题情境引入:
我们高一(3)班一共45人,其中班长易雪芳,现有以下问题:
⑴45人组成的班集体能否组成一个整体?
⑵班长易雪芳和45人所组成的班集体是什么关系?
⑶假设张三是相邻班的学生,问他与高一(3)班是什么关系?
三、课前学习
1.学法指导:
(1)阅读教材的内容感受集合的含义,理解集合与元素的关系,理解数集、空集的概念;
(2)本学时的重点是集合的含义、元素与集合之间的关系以及常用数集的符号表示、空集的意义及符号;
(3)对于一个整体是否是集合的判断的关键是对“确定”两字的理解,学习时结合实例及教材上的例题进行理解。记忆常用数集、空集的符号表示。
2.尝试练习:见《数学学案》P1
四、课堂探究:见《数学学案》P1
1.探究问题:
探究1
探究2
2.知识链接:
3.拓展提升:
例1、下列各组对象能否组成集合?
(1)所有小于10的自然数;
(2)某班个子高的同学;
(3)方程的所有解;
(4)不等式的所有解;
(5)中国的直辖市;
(6)不等式的所有解;
(7)大于4的自然数;
(8)我国的小河流。
例2、下列集合哪些是数集?再试着举两个数集,并使它们分别是有限集与无限集。
(1)1、3、5、7、9组成的集合;
(2)你班学号为单数的学生组成的集合。
例3、已知A是我国所有省的省会城市构成的集合。用符号或填空。
(1)武汉_____A,北京_____A,南京_____A,郑州_____A;
(2)-1_____N,8_____,6_____N,_____N;
(3)1_____Z,-2.45_____Z,_____Q,_____Q,_____R.
例4、判断下列各句的说法是否正确:
(1)所有在N中的元素都在N*中()
(2)所有在N中的元素都在Z中()
(3)所有不在N*中的数都不在Z中()
(4)所有不在Q中的实数都在R中()
(5)由既在R中又在N中的数组成的集合中一定包含数0()
(6)不在N中的数不能使方程4x=8成立()
答案:×,√,×,√,√,√
例5、已知集合P的元素为,若且-1P,求实数m的值
解:根据,得若此时不满足题意;若解得此时或(舍),综上符合条件的.
点评:本题综合运用集合的定义和元素与集合的关系解题,注意集合的性质的运用.
例6、设集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},C={x|x=4k+1,k∈Z},又有a∈A,b∈B,判断元素a+b与集合A、B和C的关系.
解:因A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},则集合A由偶数构成,集合B由奇数构成.
即a是偶数,b是奇数设a=2m,b=2n+1(m∈Z,n∈Z)
则a+b=2(m+n)+1是奇数,那么a+bA,a+b∈B.
又C={x|x=4k+1,k∈Z}是由部分奇数构成且x=4k+1=2·2k+1.
故m+n是偶数时,a+b∈C;m+n不是偶数时,a+bC
综上a+bA,a+b∈B,a+bC.
4.当堂训练:见《数学学案》P2
5.归纳总结:
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.
2.一般地,我们把由某些确定的对象组成的总体叫做集合(set),也简称集,组成集合的对象叫做这个集合的元素(element)
注意:集合的概念中,“某些确定的对象”,可以是任意的具体确定的事物,例如数、式、点、形、物等.
3.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.
(3)无序性:给定一个集合与集合里面元素的顺序无关.
(4)集合相等:构成两个集合的元素完全一样.
(二)元素与集合的关系
1.(1)如果a是集合A的元素,就说a属于(belongto)A,记作:a∈A;
(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作:aA,
例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,,4A,等等.
2.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示.
3.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R.
课后巩固――作业
1.习题1.1,第1-2题;
2.《数学学案》P3
3.预习集合的表示方法.
集合的概念教案3教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示
一些简单的集合
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作N,
(2)正整数集:非负整数集内排除0的集记作N*或N+
(3)整数集:全体整数的集合记作Z,
(4)有理数集:全体有理数的集合记作Q,
(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括
数0
(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0
的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,
或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:
(1)当x∈N时,x∈G;
(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G
证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
则x=x+0*=a+b∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整数,
∴=不一定属于集合G
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
七、课后记:
查看全文
false