打开文本图片集
摘 要:针对管道运行状态数据的非平衡性会造成管道泄漏诊断准确率下降的问题,提出了一种基于非平衡数据的管道泄漏检测与定位方法.首先,将管道各工况非平衡数据采用基于K均值聚类的欠采样方法处理,使其达到数据平衡.然后,将Fischer-Burmeister函数引入到双支持向量机学习过程中,以避免目标函数求解时矩阵的求逆计算,并将平衡数据作为改进双支持向量机算法的输入,识别管道泄漏.采用相关分析法实现泄漏点定位.根据Flowmaster搭建的管道模型,运用该方法识别管道泄漏.仿真实验表明,与经典双支持向量机和拉格朗日双支持向量机相比,该方法能更快速识别管道泄漏孔径及定位.
关键词:非平衡数据;K均值聚类;双支持向量机;泄漏检测;泄漏点定位
中图分类号:TP277 文献标志码:A
Abstract:As the data imbalance of pipeline working conditions decreases the accuracy of the pipeline leakage diagnosis, a method of pipeline leak detection and location based on imbalance data was proposed. First, the imbalance data of different working conditions were processed by K-means clustering algorithm and under-sampling to achieve the balance data. Then, the Fischer-Burmeister function was introduced into the learning process of the twin support vector machine : 2588-2596.
JIAO J P, LI Y Q, WU B, et al. Research on acoustic signal recognition method for pipeline leakage with BP neural network[J].Chinese Journal of Scientific Instrument, 2016, 37, 2013, 47(1): 1-7. (In Chinese)
[22]SUN L, CHANG N. Integrated-signal-based leak location method for liquid pipelines[J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 311-318.
查看全文
false