您好,欢迎来到爱学范文!

当前位置:爱学范文网>>实用资料>>数学高二必考知识点范文(精选三篇)

数学高二必考知识点范文(精选三篇)

标签:
时间:

英语情景对话是英语听力测试中的一种必修问题。以下是小编整理的数学高二必考知识点范文(精选三篇),仅供参考,大家一起来看看吧。

数学高二必考知识点篇1

一、不等式的性质

1.两个实数a与b之间的大小关系

2.不等式的性质

(4) (乘法单调性)

3.绝对值不等式的性质

(2)如果a>0,那么

(3)|ab|=|a||b|.

(5)|a|-|b|≤|a±b|≤|a|+|b|.

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

二、不等式的证明

1.不等式证明的依据

(2)不等式的性质(略)

(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

2.不等式的证明方法

(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.

用比较法证明不等式的步骤是:作差——变形——判断符号.

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

三、解不等式

1.解不等式问题的分类

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化为一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解无理不等式;

④解指数不等式;

⑤解对数不等式;

⑥解带绝对值的不等式;

⑦解不等式组.

2.解不等式时应特别注意下列几点:

(1)正确应用不等式的基本性质.

(2)正确应用幂函数、指数函数和对数函数的增、减性.

(3)注意代数式中未知数的取值范围.

3.不等式的同解性

(5)|f(x)|

(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.

(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0

数学高二必考知识点篇2

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x",y+y")。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x",y") 则 a-b=(x-x",y-y").

3、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x"+y·y"。

向量的数量积的运算率

a·b=b·a(交换率);

(a+b)·c=a·c+b·c(分配率);

向量的数量积的性质

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

数学高二必考知识点篇3

高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。

有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。

可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。

殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。

至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。

l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。

3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。

4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。


推荐阅读:

    想了解更多实用资料的资讯,请访问:实用资料
    下载文档

    看过《数学高二必考知识点范文(精选三篇)》的人还看了以下文章

    延伸阅读

    1、送你一份100%纯情奶糖:成分=真心+思念+快乐,有效期=一生,营养=温馨+幸福+感动,制造商:真心朋友!祝你元旦快乐,万事如意!2、时光飞逝年轮转,万马奔腾送猪年。一马当先是好汉,事业成功人称赞

    在《新语文读本》这片浩瀚的文学作品的海洋中,有无数催人泪下的感人故事。其中,我最喜欢的便是欧·亨利的《最后一片藤叶》。  我常常在想,人的一生究竟怎样才有意义,有没有一种形象的事物可以来比喻我们的

    述职报告如果写得好,那么是可以起到事半功倍的效果的,不仅可以总结自己的过往工作,也可以做出更好的规划。下面给大家带来一些关于军人述职报告精选推荐范文10篇,希望对大家有所帮助。

    出纳个人工作总结篇1  20xx年通过竞聘上岗,我被聘为三级一档职员,任总公司财务部出纳。在没有干出纳之前,有人说出纳工作是财务工作中最脏最累的活,回顾总结整整一年的工作,我不这样认为。我重点汇报一下

    幼儿园六一儿童节活动后,如何写活动总结呢,一起来看看本站小编为大家整理的:幼儿园六一节活动总结2023,欢迎阅读,仅供参考,更多内容请关注本站。  幼儿园六一节活动总结2023(一)  六一之前我们是

    在全体员工的齐心协力下,按照年初确立的“以人为本,打造队伍、完善管理、和谐发展”的工作方针,公司积极采取有效措施,对内加强管理,为发展打好基础,对外大力加强市场营销,以发展促巩固。20xx年公司上半年

    幼儿园英语/德语:幼儿园,原名卡纳幼儿园,几百年前从普鲁士引进。以下是为大家整理的关于2023春节放假安排的通知的文章14篇,欢迎品鉴!第1篇:2023春节放假安排的通知各中心学校、局直各学校、幼儿园

    根据自己的实际情况,比如工作职责,确定一下工作目标,这样就可以有针对性的明确自己的工作规划,可以先确定一个总的方向,在按时间分段完成。那么该如何写呢?以下是小编为大家收集的怎样写社区工作规划,希望你喜

    一个校长带领的一套好的领导班子才是办好一所学校的关键。本站今天为大家精心准备了学校领导干部述职述廉报告,希望对大家有所帮助!学校领导干部述职述廉报告尊敬的领导,各位同事:大家好!20xx-20xx学年

    下面是小编为大家整理的2023年度线上知识竞赛活动策划案(14篇),供大家参考。人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文