您好,欢迎来到爱学范文!

当前位置:爱学范文网>>工作范文>>工作计划范文>>七年级上册数学《整式的加减》教案

七年级上册数学《整式的加减》教案

标签:时间:

七年级上册数学《整式的加减》教案(精选20篇)

七年级上册数学《整式的加减》教案 篇1

1、内容结构分析

《九年义务教育课程标准实验教科书·数学》七年级上册第四章是“几何图形初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.

教学重点:

⑴ 数学与我们的成长密切相关;

⑵ 数学伴随着人类的进步与发展,人类离不开数学;

⑶人人都能学会数学,激发学生学习数学的兴趣;

⑷将实际问题转化为数学问题;

⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.

教学难点:

⑴体会数学与我们的成长密切相关;

⑵学生剪图拼图的具体操作;

⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.

3、教学目标:

⑴知识与技能:

直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.

⑵过程与方法:

通过对本章的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.

⑶情感、态度与价值观:

在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.

4、课时分配

4.3角 2课时

小结 3课时

单元测试与评讲 3课时

七年级上册数学《整式的加减》教案 篇2

学习目标

2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

重点难点能验证一个数是否是一个方程 的解。

导学指导

一、温故知新

1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

答: 叫做方程。

2: 判断下列是不是 方程,是打“√”,不是打“×”:

① ;( ) ②3+4=7;( )

③ ;( )④ ;( )

⑤ ;( ) ⑥ ;( )

二、自主探究

观察下面方程的特点

小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

(即方程的一边或两边含有未知数)

2.方程的解

如何求出使方程左右两边相等的未知数的值?

如方程 =4中, =?

方程 中的 呢?

请用小学所学过的逆运算尝试解决上面的问题。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

解:当`=2时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

当`= 时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

课堂练习

1.判断下列是不是一元一次方程,是打“√”,不是打“×”:

③ ; ( ) ④ ; ( )

(A) , ( B) ,

(C) ), ( D)

要点归纳:

拓展训练:

2.老师要求把一篇有20__字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)

七年级上册数学《整式的加减》教案 篇3

教学目标

知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.

过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.

教学重难点

重点:去括号法则,准确应用法则将整式化简.

难点:括号前面是“-”号,去括号时括号内各项都变号.

教学过程

一、复习旧知

1. 化简

2. 去括号

二、探索新知

想一想:根据分配律,你能为下面的式子去括号吗?

①+(- a+c) ② - (- a+c)

③ +(a-b+c) ④ -(a-b+c)

观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?

去括号法则:

括号前是“+”号的,把括号和它前面的“+”号去掉,

括号里各项都不改变符号;

括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,

括号里各项都改变符号。

顺口溜:

去括号,看符号;是“+”号,不变号;是“-”号,全变号。

三、巩固练习:

(1)去括号:

a+(b-c)= _______ a- (b-c)= ______

a+(- b+c)= _______ a- (- b+c)= ______

(2)判断正误

a-(b+c)=a-b+c ( )

a-(b-c)=a-b-c ( )

四、例题学习:为下面的式子去括号

五、课堂检测:

去括号:

六、课堂小结

去括号时应注意的事项:

(2)、去括号后,括号内各项符号要么全变号,要么全不变号。

(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。

七、布置作业:

七年级上册数学《整式的加减》教案 篇4

第一课时

平面图形的认识

教学目标:通过复习使同学进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以和各图形的联系。‘

教学过程:

直线、射线、线段。

直线、射线和线段有什么区别?

提问:1)什么叫做角?

整理:把表中的空格填写完整。

锐角

直角

钝角

平角

周角

大于0°

垂直与平行

提问:

什么样的两条直线叫做互相平行?

回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平

三角形。

提问:

先笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图)

在下面的表中填写三角形的名称和各自的特征。

名称

图形

特征

回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

四边形

提问:什么叫四边形?

回答:看图说出下面各图的特点,再说一说图中各字母表示什么

想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?

七年级上册数学《整式的加减》教案 篇5

教学目的和要求:

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)

教学重点和难点:

重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。

难点:理解有理数加法法则,尤其是异号两数相加的情形。

教学工具和方法:

工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)

教学过程:

一、复习引入:

1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?

4、归纳分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法。 (学生举例并完成练习一) 师生合作,根据数量关系列出方程。

教师结合练习给出方程、一元一次方程的定义。 (我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右两边相等的未知数的值就是这个方程的解. 教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。

学生举出方程的例子。 (学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程) 判断哪些是一元一次方程。 学生单独计算,并填表。 学生得出解决实际问题的模型。

四、训练巩固,课堂小结

4、 (2)设甲种铅笔买了`枝,乙种铅笔买了(20-`)枝.列方程 0.3`+0.6(20-`)=9 (3)设上底为` cm,下底为(`+2)cm.列方程 学生自己探索,独立完成,集体订正。 学生课后完成,并写学习心得。

七年级上册数学《整式的加减》教案 篇16

第一部分知识点分布

第二部分关于一元一次方程

一、一元一次方程

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

二、等式的性质

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

第一部分知识点分布

第二部分关于一元一次方程

一、一元一次方程

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

二、等式的性质

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;

如果a=b且c≠0,那么

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(4)工作量=人均效率×人数×时间。

四、实际问题与一元一次方程

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(4)工作量=人均效率×人数×时间。

四、实际问题与一元一次方程

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

七年级上册数学《整式的加减》教案 篇17

教材分析:

《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:

《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:

复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算

巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况

作业布置、反馈情况。

教学目标:

1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

教学难点:分析实际问题中的相等关系,列出方程。

教学方法:先学后教,当堂训练。

教学准备:多媒体课件等。

预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。

教学过程:

一、准备阶段:

1、知识回顾:

(2)、解下列方程:

问题:

如何解决这个问题呢?

二、导学阶段:

(一)、出示本节课的学习目标:

1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;

2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

(二)、合作交流,探究新知

分析: 设这个班有·名学生.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

这批书的总数是一个定值,表示它的两个式子应相等,

即表示同一个量的两个不同的式子相等.

根据这一相等关系列得方程:

方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?

方法过程:

像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .

4、例题学习

运用移项的方法解下列方程:

三、课堂练习:

运用移项的方法解下列方程:

四、课堂小结:

本节课,我们学习了哪些知识?你还有哪些困惑?

五、达标测试:

六、预习作业:

七年级上册数学《整式的加减》教案 篇18

一、教学目标

(一).知识与技能

会利用合并同类项解一元一次方程.

(二).过程与方法

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

(三).情感态度与价值观

开展探究性学习,发展学习能力.

二、重、难点与关键

(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

(二).难点:会列一元一次方程解决实际问题.

(三).关键:抓住实际问题中的数量关系建立方程模型.

三、教学过程

(一)、复习提问

·- =

两边都加 ,得·= .

(二)、新授

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

题目中的相等关系为:三年共购买计算机140台,即

前年购买量+去年购买量+今年购买量=140

如何解这个方程呢?

这样就可以把含·的项合并为一项,合并时要注意·的系数是1,不是0.

下面的框图表示了解这个方程的具体过程:

合并

系数化为1

·=20

由上可知,前年这个学校购买了20台计算机.

上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为a·=b的形式,其中a、b是常数.

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为·人.

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60.

(三)、巩固练习

具体解法如下:

2.补充练习.

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)

本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数.

四、课堂小结

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.

五、作业布置

合并同类项习题课(第2课时)

一、解方程.

二、解答题.

(2)两车相向而行,A车提前半小时出发,则在B车出发后多少小时两车相遇?相遇地点距离甲地多远?

4.甲、乙二人从A地去B地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B地,求A、B两地之间的距离.

5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?

答案:

4.3千米,设A、B两地间的距离为·千米, - = .

解一元一次方程

──移项(第3课时)

一、教学内容

课本第89页至第91页.

二、教学目标

(一).知识与技能

理解移项法,并知道移项法的依据,会用移项法则解方程.

(二).情感态度与价值观

鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.

三、重、难点与关键

(一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号

(二).难点:对立相等关系.

(三).关键:理解移项法则的依据,以及寻找问题中的等量关系.

四、教学过程 (一)、复习提问

(二)、新授

分析:设这个班有·名学生,根据第一种分法,分析已知量和未知量间的关系.

根据第二种分法,分析已知量与未知量之间的关系.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?

这批书的总数是一个定值(不变量)表示它的两个式子应相等.

根据这一相等关系,列方程:

本题还可以画示意图,帮助我们分析:

从示意图中容易得到这批书的总数与分出书、剩下书的关系是:

这批书的总数与需要分出的书的数量、还缺少书的数量关系是:

根据两种分法,这批书的总数是相等的.

注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.

思考:方程3·+20=4·-25的两边都含有·的项(3·与4·),也都含有不含字母的常数项(20与-25)怎样才能使它转化为·=a(常数)的形式呢?

像上面那样,把等式一边的某项变号后移到另一边,叫做移项.

方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.

下面的框图表示了解这个方程的具体过程.

移项

合并

-·=-45

系数化为1

·=46

由此可知这个班共有45个学生.

思考:上面解方程中移项起了什么作用?

答:移项使方程中含·的项归到方程的同一边(左边),不含·的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为·=a形式.

在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?

解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.

如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.

解法2:如果不先求学生数,直接设这批书共有·本,又如何布列方程?这时该用哪个相等关系列方程呢?

这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.

= (你会解这个方程吗?)

即 - = +

移项,得 - = +

合并,得 =

答:这批书共有155本.

(三)、巩固练习

(2)解:移项,得 ·- ·=6

合并,得- ·=6

2.补充练习.

下列移项对不对?如果不对,错在哪里?应当怎样改正?

(3)正确.

四、课堂小结

1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.

2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.

五、作业布置

移项习题课(第4课时)

一、填空题.

1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.

2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.

二、判断题.(对的打,错的打)

三、解方程.

四、解答题.

9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?

答案:

二、4. 5. 6.

七年级上册数学《整式的加减》教案 篇19

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题(3):

上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

七年级上册数学《整式的加减》教案 篇20

一、教材分析:

从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.

《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.

2、教学目标:

根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

知识技能目标

①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.

②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.

③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

数学思考目标

用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.

情感价值目标:

让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.

3、重点、难点:

结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.

教学重点:知道什么是方程、一元一次方程,找相等关系列方程.

教学难点:思维习惯的转变,分析数量关系,找相等关系。

二、教学策略:

如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。

三、学情分析:

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力.

四、教学过程:

本节课的教学过程我设计了以下六个环节:

(一) 情景引入

采用教材中的情景

在这个环节中我提出了三个问题:

(二)学习新知

在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题.

通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在.

然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念.

解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程.(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族.)

在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现.

方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理.

在这里我开始向学生渗透列方程解决实际问题的思考程序.

(三)讨论交流

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.

而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维.

讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

在这个讨论活动中,我采取了先小组合作交流后全班交流.

通过交流后,学生中出现如下结果:

从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元.

要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习.

在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

(四)初步应用

学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

(五)再探新知

提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质.

(六)课堂小结

让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

五、课堂设计理念

本节课着力体现以下几个方面:

1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

推荐阅读:

    想了解更多工作范文的资讯,请访问:工作计划范文
    下载文档

    看过《七年级上册数学《整式的加减》教案》的人还看了以下文章

    延伸阅读

    2022年班主任培训心得体会  付出和收获往往在更多的时候是相辅相成的,这几年的努力换来的是业务的不断提升和能力的加强,最近有幸参加省级骨干班主任的培训才发现学识与能力是需要不断学习才能得以提升的

    小学教学工作总结篇1  基础教育阶段英语课程的任务是:激发和培养学生学习英语的兴趣,使学生树立自信心,养成良好的学习习惯和形成有效的学习策略,发展自主学习的能力和合作精神。什么样的英语课堂才是充满生命

    【决心书】篇一:爱的承诺书3篇(非常温馨) 爱的承诺书3篇(非常温馨)【第1篇】爱的承诺书(非常温馨) 1、我的心里只想你一个人,爱你一个人! 2、我永远不会伤害你的心,我要时时刻刻为你着想,不能让你

    购销合同模板第一篇甲方(卖方):_________乙方(买方):_________甲、乙双方就房屋买卖事项,经协商一致,达成以下合同条款:一、甲方自愿将坐落在_________市_________区_

    评估报告,一般是指评估师根据相关的评估准则的要求,在履行必要评估程序后,对评估对象在评估基准日特定目的下的价值发表的、由其所在评估机构出具的书面专业意见。以下是为大家整理的关于公司治理评估情况报告【八

    春节老干部的慰问信篇一尊敬的老领导:您好!灵猴辞旧岁,金鸡踏春来。在新春佳节即将到来之际,市人力资源和社会保障局谨向您致以节日的祝贺及亲切的慰问,同时借此机会向您拜个早年!恭祝春节愉快,健康长寿,阖家

    -工作纪律是党的各级组织和全体党员在党的各项具体工作中必须遵守的行为规则。以下是本站小编为大家带来的关于窗口部门的工作纪律,以供大家参考!窗口部门的工作纪律局属各单位、大厅:近日央视记者暗访报道的&l

    借款应诉答辩状范文(5篇)借款应诉答辩状范文篇1民事答辩状答辩人:王海,男,汉族,x年x月x日生,x人,现住,联系电话。被答辩人:马兰,女,汉族,x年x月x日生,x人,现住,联系电话。X年11月4

    下面是小编为大家整理的2023年度六一儿童节校长致辞24篇(范例推荐),供大家参考。2023六一儿童节校长致辞(精选24篇)2023六一儿童节校长致辞篇1尊敬的各位领导,各位来宾,亲爱的老师、同学们:

    儿童升旗仪式演讲稿(精选3篇)儿童升旗仪式演讲稿篇1上午好!今天的升旗仪式由我们六年级主持。我今天为大家演讲的主题是“敬老爱老重阳节”!刚刚送走了举国欢庆的十。一国庆节,明天我们又将迎来中国古老的传统