相遇问题说课稿1 一、说教材 1.说课内容:《相遇问题》是北师大教材小学数学五年级上册“数学与交通”中的第一课。 2.教材分析 《相遇问题》这节课的教学是学生在掌握行程问题基本数量关系的基础下面是小编为大家整理的2023年度相遇问题说课稿,菁选2篇(范文推荐),供大家参考。
相遇问题说课稿1
一、说教材
1. 说课内容:《相遇问题》是北师大教材小学数学五年级上册“数学与交通”中的第一课。
2. 教材分析
《相遇问题》这节课的教学是学生在掌握行程问题基本数量关系的基础上进行的,本课教材给学生提供了“送材料”的情境,通过简单的路线图等方式呈现了速度路程等信息。然后要求学生根据这些信息去解决3个问题: ①让学生根据两辆车的速度信息进行估计,在哪个地方相遇。 ②用方程解决相遇问题中求相遇时间的问题。
③解决“相遇地点离遗址公园有多远”?实际上就是求面包车行驶的路程。
3. 学情分析
学生已经在三年级接触了简单的行程问题,四年级上册,学生就真正的开始学习速度、时间、路程之间的关系,并用三者的数量关系来解决行程问题。而本节课正是运用这些学生已有的知识基础和生活经验进行相遇问题的探究。 本节课学生对相遇问题的理解也有难度,所以我想只有站在学生学习的起点上,尊重学生发展的基础上多设计一些活动,引导学生积极参与到操作过程中,使所有学生通过本堂课都能有所收获。
4. 教学目标
从知识与技能、过程与方法、情感态度价值观的三维目标出发,制定了以下的目标:
①使学生理解相遇问题的意义及特点。
②经历解决问题的过程,提高收集信息、处理信息和建立模型的能力。 ③会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的能力。
5. 教学重难点
我将本课重点制定为:会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的能力。
难点制定为:找出相遇问题的等量关系。
二、 说教法学法
本课注重学生体验的过程:学习不是由教师把知识简单地传递给学生,而是学生自己建构知识的过程。基于这一观点,在本节课的教学中,在学生体验相遇问题中两人或两物体运动的速度不一样,但所用的时间相同这一难点,让学生模仿相遇过程和用手势表示相遇过程,使学生体验并理解。在这个基础上再引导学生画线段图,有助于学生对难点的突破。
三、 教学过程
我将本节课的教学过程设计为以下三个环节:
(一) 复习旧知,导入新课
(二) 模拟情景,探究新知
(三) 巩固新知,课外延伸。
在第一个环节中,首先我请一个学生在教室里走一走,引出速度,然后请学生提一个问题,从而复习旧知:路程=速度×时间;接着出示几道复习题复习速度=路程÷时间;时间=路程÷速度;最后总结:这是我们以前学习过的一个人或一个物体运动的行程问题,今天,我们来研究两个人或两个物体运动的行程问题。
利用学生们所熟悉的同学引出旧知,不仅激起了学生学习的兴趣,而且达到了复习旧知的目的。
第二个环节,我设计让同桌模仿相遇过程和让学生用手势表示相遇过程两个活动,让学生通过观察、实践加深对相遇问题的理解,感受到所谓“相遇”就是两人或两个物体从两地同时出发,相向而行,在途中相遇这样一个过程,在学生脑袋里建立一个清晰的相遇问题的模型,然后接着问:“刚才在手势表示的过程中,你还有什么发现?” 这时学生发现小轿车的速度快,面包车的速度慢;两辆车所走的路程就是总路程。或者学生还能发现“从出发到相遇两人用的时间一样”,这时出示路线图让学生根据两人的速度信息估计在哪里相遇。因为小轿车的速度快所以相遇地点应该在李村附近。理解“两人所用时间一样“是本节课的难点,班里大部分学生对这一问题还不理解。所以,通过播放路线图,让学生直观地感受。
在学生观看路线图的过程中,我打算分三个小步骤。首先,播放1小时小轿车和面包车所走的路程,提问:小轿车走了多少千米?面包车走了多少千米?用了多少时间?其次,继续行走了1小时,各走了多少千米?在解决这些问题的过程中,学生会发现两人所用的时间是相同的,但为什么相同呢?这又引起了学生思维上的冲突,这时再将重放幻灯片,学生就会发现她们是同时走同时停的,从出发到相遇他们所用的时间是相同的,这一难点在学生观看中,探索中自然而然的突破了
第三个环节,出示P57试一试的题目,让学生巩固新知,从而达到课外延伸的目的。
相遇问题说课稿2
教学目标
1.理解相遇问题的.基本特点,并能解答简单的相遇求路程的应用题.
2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.
3.渗透运动和时间变化的辩证关系.
教学重点
掌握求路程的相遇问题的解题方法.
教学难点
理解相遇问题中时间和路程的特点.
教学过程
一、以旧引新
(一)口答列式,并说明理由
1.一辆汽车每小时行60千米,4小时行多少千米?
2.一辆汽车4小时行了240千米,每小时行多少千米?
3.一辆汽车每小时行60千米,行驶240千米需要几小时?教师板书:速度×时间=路程
(二)创设情境
1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”
2.小组集体讨论
(1)张华送到李诚家;
(2)李诚来张华家取走;
(3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.
3.认识相遇问题
(1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?(同时,从两地,相对而行)
(2)两个人之间的距离有什么变化?(越来越近,最后变为零)教师指出:当两个人的距离为零时,称为“相遇”
具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”板书课题:相遇问题
(三)出示准备题
张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米.
根据已知条件填写下表
走的时间
张华走的路程60米
李诚走的路程70米
两人所走路程的和
现在两人的距离
1分
60米
70米
2分···
3分···
思考:
1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)
2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)
二、教学新课
(一)教学例3
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?
1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.请同学解释这两个词的含义.
2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)
3.由学生尝试解答例3
4.结合线段图订正答案.
方法一:65×4+70×4 方法二:(65+70)×4
=260+280=135×4
=540(米) =540(米)
速度和×相遇时间=路程
5.比较
(1)两种算法哪一种比较简便?
(2)两种算法之间有什么联系?
三、巩固练习
(一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?
(二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米?
讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?板书:出发地点:两地
出发时间:同时
运动方向:相向(相对、对面)
运动结果:相遇
(三)两只轮船同时从上海和武汉相对开出.从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?
(四)两辆汽车同时从一个地方向相反方向开出.甲车*均每小时行44.5千米,乙车*均每小时行38.5千米.经过3小时,两车相距多少千米?
1.由学生用手势表述题意.
2.比较:与前面题目相比,有什么不同?又有什么共同之处?
(五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.
甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?
1.由学生用手势语言向同组同学介绍题意.
2.由学生独立解答
3.出示四种不同解法,请同学小组讨论并做出判断.
方法一:75×1+75×2+69×2 方法二:75×(1+2)+69×2方法三:75×1+(75+69)×2 方法四:(75+69)×(2+1)
四、课堂小结
通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?
(相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动)今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?
怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?
五、课后作业
(一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?
(二)两辆汽车同时从一个地方向相反的方向开出.甲车*均每小时行44.5千米,乙车*均每小时行38.5千米.过3小时,两车相距多少千米?
查看全文
false