您好,欢迎来到爱学范文!

当前位置:爱学范文网>>党团范文>>公文范文>>三年级数学知识点

三年级数学知识点

标签:时间:

三年级数学知识点1  1、认识整千数(记忆:10个一千是一万)  2、读数和写数(读数时写汉字写数时写*数字)  ①一个数的末尾不管有一个0或几个0,这个0都不读。  ②一个数的中间有一个0或连续的下面是小编为大家整理的三年级数学知识点【10篇】,供大家参考。

三年级数学知识点1

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写*数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的高位上的数,如果高位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

  较大的三位数是位999,小的三位数是100,较大的四位数是9999,小的四位数是1000。较大的三位数比小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式

  和=加数+另一个加数

  加数=和-另一个加数

  减数=被减数-差

  被减数=减数+差

  差=被减数-减数

数学的概念

  数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

0的基本概念

  0既不是正数也不是负数,而是正数和负数之间的一个数,且为正数和负数的分界线。当某个数X大于0(即X>0)时,称为正数;反之,当X小于0(即X<0)时,称为负数;而这个数X等于0时,这个数就是0。

三年级数学知识点2

  1、的几位数和最小的几位数:

  的一位数是9,最小的一位数是0。

  的二位数是99,最小的二位数是10

  的三位数是999,最小的三位数是100

  的四位数是9999,最小的四位数是1000

  的五位数是,最小的五位数是

  的三位数比最小的四位数小1。

  2、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。

  3、两个三位数相加的和:可能是三位数,也有可能是四位数。

  4、加法公式:

  加数+加数=和

  和-另一个加数=加数

  5、减法公式:

  被减数-减数=差

  差+减数=被减数或被减数=差+减数

  被减数-差=减数

  6、口算时:

  例:(1)35+48,先算35+40=75,再算75+8=83。

  (2)72-28,先算72-20=52,再算52-8=44

  或先算72-30=42,再算42+2=44

  7、问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”“应准备”等词语时,都是用估算。

三年级数学知识点3

位置与方向

  1、①(东与西)相对,(南与北)相对,

  (东南—西北)相对,(西南—东北)相对。

  ②清楚以谁为标准来判断位置。

  ③理解位置是相对的,不是绝对的。

  2、地图通常是按(上北、下南、左西、右东)来绘制的。

  (做题时先标出北南西东。)

  3、会看简单的路线图,会描述行走路线。

  一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。

  4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

  5、生活中的方位知识:

  ①北斗星永远在北方。

  ②影子与太阳的方向相对。

  ③早上太阳在东方,中午在南方,傍晚在西方。

  ④风向与物体倾斜的方向相反。

  (刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)

除数是一位数的除法

  1、除数是一位数的除法计算方法:从被除数的位除起,先看被除数的位,如果不够除,就看前两位,除到被除数的哪一位就把商写在哪一位的上面,余数要比除数小。

  2、没有余数时:被除数=商×除数。有余数时:被除数=商×除数+余数。

  3、“0”不能做除数,做除数没有意义,0除以任何不是0的数都得0。

  4、想:商中间有0的除法,在什么情况下商中间才有0?

  商末尾有0的除法,在什么情况下商末尾才有0?

特殊统计图:

  当数据比较大而且各个数据间的差距比较小的时候,为了反映这组数据的"差异性,我们用起始格表示比较大的数量,而其他格表示较小的数量的统计图,我们称之为“特殊统计图”。

  1、分析统计图时首先要清楚横轴和纵轴各表示什么,每格代表多少。

  2、*均数=总数量÷总份数。

  3、*均数能较好地反映一组数据的总体情况。

  4、在计算*均数之前,要注意先估一估*均数的范围应该大约是多少,然后再进行计算,在算各个数据的总和时,应注意算2次以上以保证计算结果的准确性。

三年级数学知识点4

  一、学习目标:

  1.认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度;

  2.较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进位的加法题;

  3.初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类;

  4.知道有余数除法的含义,体会有余数出发的实际背景;

  5.认识时间单位“秒”,知道1分=60秒;会进行一些时间的简单计算;初步建立时、分、秒的时间观念,养成遵守和爱惜时间的意识和习惯;

  6.掌握一位数乘整十、整百、整千数的口算方法,会进行相应的口算;知道一位数乘整十、整百、整千数的简便算法;

  7.初步认识几分之一,会读会写几分之一,能比较分子是1的分数大小;

  8.理解一位数乘整十数的口算法。

  二、学习难点:

  1.认识时间单位时、分、秒,知道1分=60秒,会一些有关时间的简单计算;

  2.知道有余数的除法的含义,来自生活中;

  3.根据四边形的特点对四边形进行分类;

  4.哪一位上的数相加满十,要向前一位进1,而且在前一位上的数相加时,要记得加上进上来的1;

  5.认识长度单位毫米,会用毫米度量物体长度。

  三、知识点概括总结

  1.毫米:毫米是长度单位和降雨量单位,英文缩写mm。

  1毫米=0.1厘米=0.01分米=0.001米=0.千米

  2.厘米:是一个长度计量单位,等于一米的百分之一。长度单位,符号为cm.,1厘米=1/100米。

  1厘米=10毫米=0.1分米=0.01米=0.千米

  3.分米:是长度的公制单位之一,1分米相当于1米的十分之一。

  0.0001千米(km)=1分米

  0.1米(m)=1分米

  10厘米(cm)=1分米

  100毫米(mm)=1分米

  4.千米:千米又称公里,是长度单位,通常用于衡量两地之间的距离。是一个国际标准长度计量单位,符号km。

  1千米(公里)=1,000米(公尺)=100,000厘米(公分)=1,000,000毫米(公厘)

  5.吨:质量单位,公制一吨等于1000公斤。

  6.加法:基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。

  表达加法的符号为加号(+)。

  进行加法时以加号将各项连接起来,把和放在等号(=)之后,例:1、2和3之和是6,就写成︰1+2+3=6.

  加法各部分名称:“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。

  例:100(加数)+(加号)300(加数)=(等于号)400(和)

  加法性质:(1)加法交换律:a+b=b+a

  (2)加法结合律:a+b+c=a+(b+c)

  7.减法:四则运算之一,将一个数或量从另一个数或量中减去的运算叫做减法。

  已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。

  减法的性质:减去一个数,等于加这个数的相反数。

  8.验算:算题算好以后,再通过逆运算(如减法算题用加法,除法算题用乘法)演算一遍,检验以前运算的结果是否正确。

  验算的作用:验算能够有效地检查出计算过程中出现的错误,但对解题思维上的错误无太大用处,通过验算(用结果来推导条件)所得的数据与原数据比较来建议运算是否正确。

  9.四边形:由不在同一直线上四条线段依次首尾相接围成的封闭的立体图形叫四边形。由凸四边形和凹四边形组成。

  10.*行四边形:两组对边分别*行的四边形叫做*行四边形。

  11.周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。

  12.估计:根据情况,对事物的性质、数量、变化等做大概的推断。

  13.余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:1.指整数除法中被除数未被除尽部分。

  例:27除以6,商数为4,余数为3.

  余数的性质:余数有如下一些重要性质(a,b,c均为自然数):

  (1)余数小于除数;

  (2)被除数=除数×商+余数。

  除数=(被除数-余数)÷商;

  商=(被除数-余数)÷除数;

  余数=被除数-除数×商。

  14.秒:时间单位时间单位秒(second)是国际单位制中时间的基本单位,符号是s。

  15.分:时间单位,等于1/60小时,或60秒。

  16.乘法:将相同的数加法起来的快捷方式。其运算结果称为积。

  乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  18.分数:把单位“1”*均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。

  分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可以改为用分数表示。

  19.分数线、分子、分母:分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。

  分数可以表述成一个除法算式:如二分之一等于1除以2,其中,1分子等于被除数,分数线等于除号,2分母等于除数,而0.5分数值则等于商。

  20.分数由来:分数在我们*很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,*人发明了分数线,分数的表示法就成为现在这样了。

  200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,像7/3就是一种新的数,我们把它叫做分数。

  21.可能性:可能性是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

三年级数学知识点5

  分数的初步认识

  1、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的.分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。

  ②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

  5、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  6、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

多项式定义

  在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

  对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

数学知识点

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

三年级数学知识点6

  求一个数是另一个数的几倍

  (1)求一个数是另一个数的几倍,得数后面不加单位名称。

  (2)倍的意义:一个数里面有几个另一个数,就说一个数是另一个数的几倍。

  (3)求一个数是另一个数的几倍的解题方法:求一个数是另一个数的几倍就是求一个数里面有几个另一个数,即一个数÷另一个数。

  例题1:小明今年6岁,妈妈今年36岁,去年妈妈的年龄是小明的几倍?

  分析:根据题意我们可以先分别用妈妈和小明的今年年龄减去1,求出他们去年的年龄,再用去年的妈妈的年龄除以小明去年的年龄即可。(36-1)÷(6-1)=7。切记得数后面不能加倍。

  例题2:一条菜虫由幼虫长成成虫,每天长大1倍,第30天长到了16厘米,这条菜虫长到4厘米要用多少天?

  分析:这类型题目我们可以采取倒推法,根据题意第30天长到16厘米,第29天长到8厘米,第28天长到4厘米。

  例题3:小静家买了一些水果,苹果的个数比梨多8个,比橘子少32个,橘子的个数是苹果的2倍,小静家买了苹果、梨、橘子一共多少个?

  分析:根据题意我们可以推出苹果的个数=梨的个数+8;苹果的个数=橘子的个数-32;橘子的个数=2×苹果的个数。等量代换可以求出苹果的个数为32个。分别代入上面各个关系式中求得梨的个数为24个,橘子的个数为64个。一共有24+32+64=120(个)。

  求一个数的几倍是多少

  (1)求一个数的几倍是多少,就是求几个相同加数的和是多少,用乘法计算。

  (2)求比一个数的几倍多几或少几的数是多少的问题,求出几倍数后,多几就加几,少几就减几。

  (3)解答差倍问题时,要先找出差所对应的倍数,先求1倍数,再求几倍数。关系式:差÷(倍数-1) =较小数(即1倍数),较小数×倍数=较大数(即几倍数)或差+较小数=较大数(即几倍数)。

  例题1:弟弟今年7岁,爸爸的年龄比弟弟的6倍少4岁,爸爸今年多少岁?

  分析:分析题意先求出弟弟年龄的6倍是多少,再用所得的结果减去4。6×7-4=38(岁)。

  例题2:甲、乙两个牧童在草地上放羊。乙有5只羊,甲说:“把你的羊给我2只,我的羊就是你的5倍了。”你能猜出甲原有多少只羊?

  分析:根据题意我们分析,甲说:“把你的羊给我2只,我的羊就是你的5倍了。”在乙把羊给甲2只以后,乙剩3只羊。那么甲得到乙的2只后有3×5=15只,甲原来有羊15-2=13只。

小学数学常考的四边形定义题型

  (1)什么是四边形?

  有四条线段围成的图形叫四边形。

  (2)什么是*等四边形?

  两组对边分别*行的四边形叫做*行四边形。

  (3)什么是*行四边形的高?

  从*行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

  (4)什么是梯形?

  只有一组对边*行的四边形叫做梯形。

  (5)什么是梯形的底?

  在梯形里互相*等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

  (6)什么是梯形的腰?

  在梯形里,不*等的一组对边叫梯形的腰。

  (7)什么是梯形的高?

  从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

  (8)什么是等腰梯形?

  两腰相等的梯形叫做等腰梯形。

数学质数相关定理

  1.在一个大于1的数a和它2倍之间,即区间(a,2a)中必存在至少一个素数。

  2.存在任意长度的素数等差数列。(格林和陶哲轩,20xx年)

  3.一个偶数可以写成两个数字之和,其中每一个数字都最多只有9个质因数。(挪威布朗,1920年)

  4.一个偶数必定可以写成一个质数加上一个合成数,其中的因子个数有上界。(瑞尼,1948年)

  5.一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)

  6.一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为(1+2)(*陈景润)

三年级数学知识点7

  面积和面积单位

  1.常用的面积单位有:(*方厘米)、(*方分米)、(*方米)。

  2.理解面积的意义和面积单位的意义。

  面积:物体表面或封闭图形的大小,叫做它们的面积。

  1*方米:边长是1米的正方形,它的面积是1*方米。

  1*方分米:边长是1分米的正方形,它的面积是1*方分米。

  1*方厘米:边长是1厘米的正方形,它的面积是1*方厘米。

  3.在生活中找出接近于1*方厘米、1*方分米、1*方米的例子。例如1*方厘米(指甲盖)、1*方分米(电脑光盘或电线插座)、1*方米(教室侧面的小展板)。

  4.区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。

  5.比较两个图形面积的大小,要用(统一)的面积单位来测量。

  背熟:

  (1)边长(1厘米)的正方形,面积是(1*方厘米)。

  (反过来也要会说。面积是1*方厘米的正方形,它的边长是1厘米。)

  (2)边长(1分米)的正方形,面积是(1*方分米)。

  (3)边长(1米)的正方形,面积是(1*方米)。

  (4)边长是(100米)的正方形面积是(1公顷),也就是(*方米)。

  (5)边长是(1千米)的正方形面积是1*方千米。

  面积单位进率和土地面积单位:

  1.常用的土地面积单位有(公顷)和(*方千米)。

  1公顷:边长是100米的正方形,它的面积是1公顷。

  1*方千米:边长是1千米的正方形,它的面积是1*方千米。

  1公顷=*方米

  1*方千米=100公顷

  1*方千米=*方米

  2.正确理解并熟记相邻的面积单位之间的进率。

  ①进率100:

  1*方米= 100*方分米

  1*方分米= 100*方厘米

  1*方千米= 100公顷

  ②进率:

  1公顷= *方米

  1*方米= *方厘米

  ③进率:

  1*方千米= *方米

  ④相邻两个常用的长度单位之间的进率是( 10 )。

  相邻两个常用的面积单位之间的进率是( 100 )。

  背熟公式

  1、周长公式:

  长方形的周长= (长+宽)× 2

  长=周长÷2-宽

  或者:(周长-长×2)÷2=宽

  宽=周长÷2-长

  或者:(周长-宽×2)÷2=长

  正方形的周长=边长×4

  正方形的边长=周长÷4

  2 、面积公式:

  长方形的面积=长×宽

  正方形的面积=边长×边长

  长方形的周长=(长+宽)×2

  正方形的周长=边长×4

  已知面积求长:长=面积÷宽

  已知面积求边长:边长=面积开*方

  已知周长求长:长=周长÷2 -宽

  已知面积求边长:边长=面积÷4

  A、正确区分长方形和正方形的周长和面积的意义,并能正确运用上面的4个计算公式求周长和面积。

  归类:什么样的问题是求周长?(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等)什么样的问题是求面积?或与面积有关?(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地、裁手帕的等等)

  B、长方形或正方形纸的剪或拼。有两个或两个以上长方形或正方形拼成新的图形后的面积与周长。从一个图形中(通常是长方形)剪掉一个图形(最大的正方形等)求剪掉部分的面积或周长、求剩下部分的面积或周长。要求先画图,再标上所用数据,最后列式计算。

  C、刷墙的(有的中间有黑板、窗户等):用大面积-小面积。

  熟练运用进率进行面积单位之间的换算。掌握换算的方法。

  1、低级单位——高级单位:数量÷它们间的进率

  如:零钱换大钱,张数减少;300*方分米=3*方米

  1、高级单位——低级单位:数量×们间的进率

  如:大钱换零钱,张数增多;5*方千米=500公顷

  注意:

  (1)面积相等的两个图形,周长不一定相等。

  周长相等的两个图形,面积不一定相等。

  (2)大单位换算小单位(乘它们之间的进率)

  小单位换算大单位(除以它们之间的进率)

  (3)长度单位和面积单位的单位不同,无法比较。

  (4)周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长也不一定相等。

数学多位数乘一位数知识点

  1、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数依次去乘多位数的每一位,哪一位上乘得的数积满几十,就向前一位进几。

  2、在乘法里,乘数也叫做因数。

  3、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

数学复习重点归纳

  相遇问题公式

  1.相遇路程=速度和×相遇时间

  2.相遇时间=相遇路程÷速度和

  3.速度和=相遇路程÷相遇时间

  几何知识点

  1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。

  2.角:从一点引出两条射线所组成的图形叫做角。

  3.角的大小:角的大小看两条边*的大小,*的越大,角越大。

  4.小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。角的两边在一条直线上的角叫做*角。*角180°。

  5.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)

  6.*行线:在同一*面内不相交的两条直线叫做*行线。也可以说这两条直线互相*行。

三年级数学知识点8

(一)年、月、日部分

  1、一年有12个月;一年有4个季度(1、2、3月为第1季度;4、5、6月为第2季度,;7、8、9月为第3季度;10、11、12月为第4季度)。

  2、记大小月的方法:1、3、5、7、8、10、腊,31天永不差;4、6、9、冬,30整,只有2月二七九。7个大月,4个小月,二月*年28天,闰年29天。

  3、*年全年有365天,*年2月是28天,*年的上半年有181天,下半年有184天。*年全年有52个星期零1天。

  4、闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。

  5、公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、20xx、2400等是闰年。

  6、连续两个月共62天的是:7月和8月,12月和第二年的1月;

  一年中连续两个月共62天的是:7月和8月。

  7、一个人今年20岁,但只过了5个生日,他是2月29日出生的。

  8、计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到20xx年10月1日,是*成立(59)周年。用20xx-1949=59周年

(二)24时计时法部分

  1、年月日、时分秒都是时间单位。

  2、在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。

  3、1日(天)=24小时;1小时=60分;1分=60秒

  4、求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。

  5、认识时间与时刻的区别。

  如:火车11:00出发,21:30到达,火车运行时间是10小时30分,注意不要写成10:30。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的.形式相减。

  再如:火车19时出发,第二天8时到达,火车运行时间是13小时。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)。

  又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  6、经过的天数的计算:

  公式:结束时间—开始时间+1=经过的天数

  例如:6月12到6月30日是多少天?(30-12+1=19天)

数学学习方法

  主动预习

  新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。

  如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

  抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  思考是数学学习方法的核心

  一些孩子对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。

  如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48*方厘米,这个正方体的体积是多少?”

  孩子对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师家长的引导下逐渐掌握解题时的思考方法。

数学求倒数地方法

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

三年级数学知识点9

  1、只要是*均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

  的"被除数=商×除数+的余数;

  最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商??余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数-余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

小学数学数的读法和写法

  1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

  4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

  6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

  7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

  8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

小学数学必背公式

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数

三年级数学知识点10

  一、位置与方向

  1、东与西相对,南与北相对,

  东南与西北相对,西南与东北相对。位置是相对的,不是绝对的。判断位置时现要弄清楚是以谁为标准。

  2、地图通常是按上北、下南、左西、右东来绘制的。

  二、除数是一位数的除法

  1、一位数除整十、整百、整千数的口算

  (1)利用“表内除法计算”

  (2)想乘算除

  2、一位数除几百几十几数或几千几百数的口算

  (被除数前两位能被一位数整除时)用被除数的前两位除以一位数,在得数的末尾添上与被除数末尾同样多的0。

  3、口算时的注意事项

  (1)0除以任何数(0除外)都等于0;

  (2)0乘以任何数都得0;

  (3)0加任何数都得任何数本身;

  (4)任何数减0都得任何数本身。

  4、笔算除法的顺序:确定商的位数,试商,检查,验算

  5、一位数除两、三位数的笔算方法

  先从被除数的最高位除起,如果最高位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。

  6、除法的验算方法

  没有余数的除法的验算方法:商×除数=被除数

  有余数的除法的验算方法:商×除数+余数=被除

  7、三位数除以一位数的估算方法

  除数不变,把三位数看成几百几十数或整百数,再用口算除法的基本方法进行计算。

  三、年、月、日

  1、经过的天数的计算

  结束时间—开始时间+ 1

  2、计算经过时间,就是用结束时刻减开始时刻

  结束时刻-开始时刻=时间段(经过时间)

  3、时间与时刻的区别

  时间是一段,时刻是一个点

  四、两位数乘两位数

  1、口算乘法

  (1)两位数乘一位数的口算

  把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加。

  (2)整百整十数乘一位数的口算

  先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。

  先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。

  (3)两位数乘整十数的口算

  先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个0。

  2、笔算乘法

  先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。

  五、小数的初步认识

  1、小数的意义

  像3.45,0.85,2.60,36.6,1.2和1.5这样的数叫做小数。小数是分数的另一种表现形式。

  2、小数的认、读、写

  限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分,按顺序依次读出每一位上的数字,有几个0就读几个零。

  3、比较两个小数的大小

  先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。

  4、计算小数加、减法

  小数点对齐,也就是相同数位对齐,再按照整数加、减法的计算方法进行计算,最后在得数里点上小数点,使它与横线上的小数点对齐。

  练习题

  1、看图填一填。

  (1)儿童公园在城市广场的(东北)面,商场在城市广场的(西北)面。

  (2)朝阳小区在城市广场的(北)面,在工商银行的(东北)面。

  (3)实验小学在城市广场的(南)面,在电影院的(西南)面,在工商银行的(东南)面。

  【分析:在用方位词描述一个物体的具*置时,要弄清楚主语是谁,谁作为“标准”存在。在理解题目时,对于像2、3小题这种由两句话组成的问题,在填写后半句时,更要确认好主语是谁。在做题时可以边读题,边标示出标准是谁,并画出方向箭头,再根据箭头得出方向。】

  2、黄昏,当你面对太阳时,你的后面是(东)面,左面是(南)面,右面是(北)面。

  【分析:在确定方位时,如果遇到和熟悉的“上北下南左西右东”不同的情况时,可以通过画图的方法帮助理解。在本题中要明白“黄昏,当你面对太阳时”,面朝的方向是西面,以此信息为起点,画出其它的方向。】

  3、有84朵花,每4朵花扎1束,可以扎多少束?*均每人送2束,这些鲜花大约可以送给多少人?

  84÷4=21(束)

  21÷2=10(人)……1(束)

  答:每4朵花扎1束,可以扎21束。*均每人送2束,这些鲜花大约可以送给10人。

  【分析:要仔细阅读题目,理解“大约”的含义,可以采用划一划、圈一圈等方式弄清题意。要注意到“每4朵扎一束”,“*均每人送2束”,这两种方法的不同。】

  4、参观科技馆的*人数是儿童的2倍,如果一共有456人参观,儿童有多少人?

  456÷(1+2)=152(人)

  答:儿童有152人。

  【分析:应用题最关键是理解数量之间的关系,而理解倍数关系句又是解答倍数应用题的关键。画线段图可以帮助理清数量关系。】

  5、制作每只蝴蝶标本需10分钟。李老师:“我6天制作了12盒蝴蝶标本。”已知每盒蝴蝶标本有5只。

  (1)李老师*均每天制作蝴蝶标本多少只?

  12×5÷6=10(只)

  答:李老师*均每天制作蝴蝶标本10只。

  (2)李老师在这6天中制作标本花了多少时间?

  12×5×10=600(分)

  答:李老师在这6天中制作标本花了600分钟。

  【分析:一般出现的“多余信息”和“隐藏信息”都比较明显,比较容易辨别。但在这一练习中的信息都是相关的,只是在解决不同的问题时成了“多余信息”,因此会对学生产生比较大的干扰。首先要弄清楚每一小问中的数量关系,再选择需要的信息来进行解题。】

  6、一场排球赛,从19时30分开始,进行了155分钟。比赛什么时候结束?

  155÷60=2(时)…35(分)

  19时30分+2时35分=22时5分

  答:比赛22时5分结束。

  【分析:在解答此类关于时间的问题时,要能熟练地运用时、分、秒之间的关系进行换算。1小时=60分,1分=60秒。在得到结果后要注意检查是否符合实际情况,避免出现21时65分这样的错误。】

  7、阳阳晚上9时睡觉,第二天早上6时起床,他一共睡了几个小时?

  晚上9时=21:00

  早上6时=6:00

  24:00-21:00=3(时)

  6:00-0:00=6(时)

  3+6=9(时)

  答:他一共睡了9个小时。

  【分析:解决此类与时间相关的问题时要联系实际,明白晚上12:00是两天的分界线。在解题时可以利用钟面,化抽象为具体,掌握最基础的计算方法。利用手中的钟面模型,自己动手拨一拨,找准开始和结束的时刻,再数一数中间相隔几大格就是经过几小时。也可以采用画线段图的方法进行分段计算。画线段图如下:】

  8、

  56×14=784(元)

  答:一共卖了784元。

  【分析:要弄清楚数量关系。要解决“一共卖了多少钱”需要知道卖了多少套和每套的价格,这样就不会被多余信息误导。在计算时,要多想一想自己写的每一步算式在计算什么,有什么含义,这样也可以帮助我们避免出错。】

  9、一根钢丝长72.6米,比另一根短0.8米,另一根钢丝长多少米?

  72.6+0.8=73.4(米)

  答:另一根钢丝长73.4米。

  【分析:已知一个数比另一个数少多少,求另一个数,用减法计算。在列竖式计算时要注意,小数点要对齐。】


三年级数学知识点10篇扩展阅读


三年级数学知识点10篇(扩展1)

——三年级数学知识点10篇

三年级数学知识点1

  分数的初步认识

  1、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。

  ②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

  5、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  6、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

多项式定义

  在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

  对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

数学知识点

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

三年级数学知识点2

  1、的几位数和最小的几位数:

  的一位数是9,最小的一位数是0。

  的二位数是99,最小的二位数是10

  的三位数是999,最小的三位数是100

  的四位数是9999,最小的四位数是1000

  的五位数是,最小的五位数是

  的三位数比最小的四位数小1。

  2、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。

  3、两个三位数相加的和:可能是三位数,也有可能是四位数。

  4、加法公式:

  加数+加数=和

  和-另一个加数=加数

  5、减法公式:

  被减数-减数=差

  差+减数=被减数或被减数=差+减数

  被减数-差=减数

  6、口算时:

  例:(1)35+48,先算35+40=75,再算75+8=83。

  (2)72-28,先算72-20=52,再算52-8=44

  或先算72-30=42,再算42+2=44

  7、问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”“应准备”等词语时,都是用估算。

三年级数学知识点3

含义:

  计量很重的物品或大宗物品的质量,通常用吨做单位,吨用符号t表示。

  举例:1袋大米约重10千克,100袋大米约重1000千克,也就是1吨。

单位换算:

  1吨=1000千克

  2吨=20xx千克

方法分析:

  1吨=1000千克,2吨是2个1吨,就是2个1000千克,是20xx千克,即2吨=20xx千克。

方法归纳:

  把较大的质量单位换算成相邻的较小的质量单位时,就是在所换算数的末尾添上3个0,把较小的质量单位换算成相邻的较大的质量单位时,就是在所换算数的末尾去掉3个0。

生活中吨的应用:

  吨的确是个比千克重的多的单位,那么,在计量较重的或大宗物品的质量时,通常用吨作单位?例如“一列货车每节车厢的载重量是50吨,一般一辆货车大约有30—50节车厢,也就是说可以运送200吨左右的货物。实际上,生活中很多物品的质量是用吨来作单位的。比如:嫦娥一号起飞重量为2。35吨;空集装箱本身的重量在2吨—5吨;亚洲象*均重3—4吨,非洲象*均五到六吨左右等等。

三年级数学知识点4

位置与方向

  1、①(东与西)相对,(南与北)相对,

  (东南—西北)相对,(西南—东北)相对。

  ②清楚以谁为标准来判断位置。

  ③理解位置是相对的,不是绝对的。

  2、地图通常是按(上北、下南、左西、右东)来绘制的。

  (做题时先标出北南西东。)

  3、会看简单的路线图,会描述行走路线。

  一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。

  4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

  5、生活中的方位知识:

  ①北斗星永远在北方。

  ②影子与太阳的方向相对。

  ③早上太阳在东方,中午在南方,傍晚在西方。

  ④风向与物体倾斜的方向相反。

  (刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)

除数是一位数的除法

  1、除数是一位数的除法计算方法:从被除数的位除起,先看被除数的位,如果不够除,就看前两位,除到被除数的哪一位就把商写在哪一位的上面,余数要比除数小。

  2、没有余数时:被除数=商×除数。有余数时:被除数=商×除数+余数。

  3、“0”不能做除数,做除数没有意义,0除以任何不是0的数都得0。

  4、想:商中间有0的除法,在什么情况下商中间才有0?

  商末尾有0的除法,在什么情况下商末尾才有0?

特殊统计图:

  当数据比较大而且各个数据间的差距比较小的时候,为了反映这组数据的"差异性,我们用起始格表示比较大的数量,而其他格表示较小的数量的统计图,我们称之为“特殊统计图”。

  1、分析统计图时首先要清楚横轴和纵轴各表示什么,每格代表多少。

  2、*均数=总数量÷总份数。

  3、*均数能较好地反映一组数据的总体情况。

  4、在计算*均数之前,要注意先估一估*均数的范围应该大约是多少,然后再进行计算,在算各个数据的总和时,应注意算2次以上以保证计算结果的准确性。

三年级数学知识点5

  一、学习目标:

  1.认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度;

  2.较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进位的加法题;

  3.初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类;

  4.知道有余数除法的含义,体会有余数出发的实际背景;

  5.认识时间单位“秒”,知道1分=60秒;会进行一些时间的简单计算;初步建立时、分、秒的时间观念,养成遵守和爱惜时间的意识和习惯;

  6.掌握一位数乘整十、整百、整千数的口算方法,会进行相应的口算;知道一位数乘整十、整百、整千数的简便算法;

  7.初步认识几分之一,会读会写几分之一,能比较分子是1的分数大小;

  8.理解一位数乘整十数的口算法。

  二、学习难点:

  1.认识时间单位时、分、秒,知道1分=60秒,会一些有关时间的简单计算;

  2.知道有余数的除法的含义,来自生活中;

  3.根据四边形的特点对四边形进行分类;

  4.哪一位上的数相加满十,要向前一位进1,而且在前一位上的数相加时,要记得加上进上来的1;

  5.认识长度单位毫米,会用毫米度量物体长度。

  三、知识点概括总结

  1.毫米:毫米是长度单位和降雨量单位,英文缩写mm。

  1毫米=0.1厘米=0.01分米=0.001米=0.千米

  2.厘米:是一个长度计量单位,等于一米的百分之一。长度单位,符号为cm.,1厘米=1/100米。

  1厘米=10毫米=0.1分米=0.01米=0.千米

  3.分米:是长度的公制单位之一,1分米相当于1米的十分之一。

  0.0001千米(km)=1分米

  0.1米(m)=1分米

  10厘米(cm)=1分米

  100毫米(mm)=1分米

  4.千米:千米又称公里,是长度单位,通常用于衡量两地之间的距离。是一个国际标准长度计量单位,符号km。

  1千米(公里)=1,000米(公尺)=100,000厘米(公分)=1,000,000毫米(公厘)

  5.吨:质量单位,公制一吨等于1000公斤。

  6.加法:基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。

  表达加法的符号为加号(+)。

  进行加法时以加号将各项连接起来,把和放在等号(=)之后,例:1、2和3之和是6,就写成︰1+2+3=6.

  加法各部分名称:“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。

  例:100(加数)+(加号)300(加数)=(等于号)400(和)

  加法性质:(1)加法交换律:a+b=b+a

  (2)加法结合律:a+b+c=a+(b+c)

  7.减法:四则运算之一,将一个数或量从另一个数或量中减去的运算叫做减法。

  已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。

  减法的性质:减去一个数,等于加这个数的相反数。

  8.验算:算题算好以后,再通过逆运算(如减法算题用加法,除法算题用乘法)演算一遍,检验以前运算的结果是否正确。

  验算的作用:验算能够有效地检查出计算过程中出现的错误,但对解题思维上的错误无太大用处,通过验算(用结果来推导条件)所得的数据与原数据比较来建议运算是否正确。

  9.四边形:由不在同一直线上四条线段依次首尾相接围成的封闭的立体图形叫四边形。由凸四边形和凹四边形组成。

  10.*行四边形:两组对边分别*行的四边形叫做*行四边形。

  11.周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。

  12.估计:根据情况,对事物的性质、数量、变化等做大概的推断。

  13.余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:1.指整数除法中被除数未被除尽部分。

  例:27除以6,商数为4,余数为3.

  余数的性质:余数有如下一些重要性质(a,b,c均为自然数):

  (1)余数小于除数;

  (2)被除数=除数×商+余数。

  除数=(被除数-余数)÷商;

  商=(被除数-余数)÷除数;

  余数=被除数-除数×商。

  14.秒:时间单位时间单位秒(second)是国际单位制中时间的基本单位,符号是s。

  15.分:时间单位,等于1/60小时,或60秒。

  16.乘法:将相同的数加法起来的快捷方式。其运算结果称为积。

  乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  18.分数:把单位“1”*均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。

  分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可以改为用分数表示。

  19.分数线、分子、分母:分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。

  分数可以表述成一个除法算式:如二分之一等于1除以2,其中,1分子等于被除数,分数线等于除号,2分母等于除数,而0.5分数值则等于商。

  20.分数由来:分数在我们*很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,*人发明了分数线,分数的表示法就成为现在这样了。

  200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,像7/3就是一种新的数,我们把它叫做分数。

  21.可能性:可能性是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

三年级数学知识点6

第一章分式

  1、分式及其基本性质

  分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2、分式的运算

  (1)分式的乘除

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减

  加减法法则:同分母分式相加减,分母不变,把分子相加减;

  异分母分式相加减,先通分,变为同分母的分式,再加减

  3、整数指数幂的加减乘除法

  4、分式方程及其解法

第二章反比例函数

  1、反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2、反比例函数在实际问题中的应用

第三章勾股定理

  1、勾股定理:直角三角形的两个直角边的*方和等于斜边的*方

  2、勾股定理的逆定理:如果一个三角形中,有两个边的*方和等于第三条边的*方,那么这个三角形是直角三角形。

第四章四边形

  1、*行四边形

  性质:对边相等;对角相等;对角线互相*分。

  判定:两组对边分别相等的四边形是*行四边形;

  两组对角分别相等的四边形是*行四边形;

  对角线互相*分的四边形是*行四边形;

  一组对边*行而且相等的四边形是*行四边形。

  推论:三角形的中位线*行第三边,并且等于第三边的一半。

  2、特殊的*行四边形:矩形、菱形、正方形

  (1)矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有*行四边形的所有性质

  判定:有一个角是直角的*行四边形是矩形;

  对角线相等的*行四边形是矩形;

  推论:直角三角形斜边的中线等于斜边的一半。

  (2)菱形

  性质:菱形的四条边都相等;

  菱形的对角线互相垂直,并且每一条对角线*分一组对角;

  菱形具有*行四边形的一切性质

  判定:有一组邻边相等的*行四边形是菱形;

  对角线互相垂直的*行四边形是菱形;

  四边相等的四边形是菱形。

  (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

  3、梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等;

  同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

  加权*均数、中位数、众数、极差、方差

三年级下册数学学习方法

  回顾和把握*时的困难,注意检查错误,填补空白,合理解决问题。

  在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在*时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。

三年级下册数学学习技巧

  学会看题

  高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。

  有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。

  课后巩固

  很多学生在课后的学习过程中不注重巩固,只是觉得课堂上的一些知识就足够了,其实这是错误的。高中数学知识丰富,不像初中数学那么简单,却有着丰富的内涵。如果它不能进一步挖掘,那么它只是掌握这些知识的表面。因此,我不知道如何理解,也不能使用这些知识时,我做我的练习。

  做练习是必要的,但有些学生只是做练习,而不是巩固这些知识,把知识扩展到做练习,经常是在练习完成后完成练习。这和中学问题没有什么区别。事实上,我们也应该把在这个练习中使用的知识联系起来,这样我们才能理解正在使用的知识,并且能够掌握更多的知识。也可以发现知识点是关键,也可以发现如何链接相关知识的难题。

三年级数学知识点7

  一、学习目标:

  1.使学生认识东、南、西、北四个方向,能够用给定的一个方向辨认其余的三个方向,并能用这些词语描述物体所在的方向;

  2.在实践操作活动理解掌握一位数除法口算方法;能正确、熟练地口算简单的除数是一位数的除法;

  3.使学生理解*均数的意义,初步学会简单的*均数的方法,理解*均数在统计学上的意义;

  4.经历探索口算方法的过程,学会口算整十、整百数乘整十数及两位数乘整十、整百数;

  5.理解面积的意义;认识常用面积单位*方厘米、*方分米、*方米;

  6.使学生初步掌握十分之几、百分之几的分数都可以改写成零点几的形式;

  7.使学生正确掌握小数的读、写法;使学生了解小数各部分的名称。

  二、学习难点:

  1.使学生认识东、南、西、北四个方向;

  2.形成正确的“面积单位”概念;

  3.使学生正确理解小数的含义;

  4.以元为单位的小数与几元几角几分的相互改写;以米为单位的小数与米、分米、厘米的相互改写。

  5.学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十);

  6.让学生理解、掌握几十几除以以位数的口算方法。

  三、知识点归纳总结

  1.位置:所在或所占的地方。

  2.方向:指东,西,南,北等方位。

  3.除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

  若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。

  其中,c叫做被除数,b叫做除数,运算的结果a叫做商。

  4.除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。

  余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

  5.商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。

  6.除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)。

  7.被除数、除数、商的关系:被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍;除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。

  8.笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

  9.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

  10.没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。

  11.第一级运算:加法和减法叫做第一级运算。

  12.第二级运算:乘法和除法叫做第二级运算。

  13.数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。

  14.数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。

  15.数据分析的步骤和应用:数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:

  (1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。

  (2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。

  (3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

  16.*均数:指在一组数据中所有数据之和再除以数据的个数。*均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。

  解答*均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。

  在统计工作中,*均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。

  17.二十四时计时法

  (1)分段计时法(十二时计时法):深夜12时是一日的开始,1天的24小时又分为两段,每段12小时。从深夜12时起到中午12时叫做上午,再从中午12时起到深夜12时叫做下午。生活中通常采用这种计时法。

  (2)二十四时计时法:这是是广播电台、车站、邮电局等部门采用的0到24时计时法,按照这种计时法,下午1时就是13:00,下午2时就是14:00……夜里12时就是24:00,又是第二天的0:00.

  18.乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  19.乘法的运算定律:

  整数的乘法运算满足:交换律,结合律,分配律,消去律。

  随着数学的发展,运算的对象从整数发展为更一般群。

  群中的乘法运算不再要求满足交换律。最有名的非交换例子,就是哈密尔顿发现的四元数群。但是结合律仍然满足。

  (1)乘法交换律:a×b=b×a

  (2)乘法结合律:(a×b)×c=a×(b×c)

  (3)乘法分配律:(a+b)×c=a×c+b×c

  20.乘法表:

  21.面积:物体的表面—*面图形的大小,叫做它们的面积。

  常用的面积单位有*方厘米、*方分米和*方米。

  (1)边长是1厘米的正方形,面积是1*方厘米。

  (2)边长是1分米的正方形,面积是1*方分米。

  (3)边长是1米的正方形,面积是1*方米。

  一般测量较大的面积用到公顷和*方千米。

  (1)边长是100米的正方形,面积是1公顷。

  (2)边长是1千米的正方形,面积是1*方千米。

  24.面积计算方法:

  长方形:S=ab{长方形面积=长×宽}

  正方形:S=a2{正方形面积=边长×边长}

  *行四边形:S=ab{*行四边形面积=底×高}

  三角形:S=ab÷2{三角形面积=底×高÷2}

  梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}

  圆形(正圆):S=πr2{圆形(正圆)面积=圆周率×半径×半径}

  25.面积计量单位及进率:

  1*方千米(k㎡)=100公顷(ha)1*方千米=*方米(㎡)

  1公顷=*方米1*方米=100*方分米(d㎡)

  1*方分米=100*方厘米(c㎡)。

  26.公顷:公顷的单位符号用“h㎡”表示,其中h表示百米,h㎡的含义就是百米的*方,也就是*方米,即1公顷。

  27.小数:小数由整数部分、小数部分和小数点组成。

  当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数小数是十进制分数的一种特殊表现形式。

  分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。

  28.小数的基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。

  而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。

  29.小数写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。

  30.小数的读法:

  (1)按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读。

  例:0.38读作百分之三十八,14.56读作十四又百分之五十六。

  (2)整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0.

  例:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。

三年级数学知识点8

  四边形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的*行四边形。

  6、*行四边形的特点:

  ①对边相等、对角相等。

  ②*行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式。

  正方形的周长=边长×4

  正方形的边长=周长÷4,

  长方形的周长=(长+宽)×2

  长方形的长=周长÷2-宽,

  长方形的宽=周长÷2-长

  分数的初步认识

  1、把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

  3、①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

  ②1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数

  时分秒

  1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)

  2、计量很短的时间,常用秒。秒是比分更小的时间单位。

  3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

  4、秒表:一般在体育运动中用来记录以秒为单位的时间。

  5、常用时间单位:时、分、秒。

  6、时间单位:时、分、秒,每相邻两个单位之间的进率都是60。

  1时=60分1分=60秒半时=30分30分=半时

  7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。

  8、计算一段时间,可以用结束的时刻减去开始的时刻。

单项式书写格式

  1.数字写在字母的前面,应省略乘。[5a]、[16xy]等。

  2.π是常数,因此也可以作为系数。它不是未知数。

  3.若系数是带分数,要化成假分数。

  4.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab]写成[-ab]等。

  5.在单项式中字母不可以做分母,分子可以。

  6.单独的数“0”的系数是零,次数也是零。

  7.常数的系数是它本身,次数为零。

  8.如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。

数学几何公式

  1、长方体的表面积=(长×宽+长×高+宽×高)×2。

  2、长方体的体积=长×宽×高:V=abh。

  3、正方体的表面积=棱长×棱长×6:S=6a×a。

  4、正方体的体积=棱长×棱长×棱长:V=a.a.a=a。

  5、圆柱的侧面积=底面圆的周长×高:S=ch。

  6、圆柱的表面积=上下底面面积+侧面积:

  S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch。

  7、圆柱的体积=底面积×高:V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h。

  8、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。

三年级数学知识点9

  (一)口算除法

  1、整千、整百、整十数除以一位数的口算方法。

  (1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。

  (2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。

  2、三位数除以一位数的估算方法。

  (1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。

  (2)想口诀估算:想一位数乘几最接近或等于被除数的最高位或前两位,那么几百或几十就是所要估算的商。

  (二)笔算除法

  1、牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。

  (除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用0占位。每一次除得的余数必须比除数小。)

  2、会判断商是几位数。

  比较除数与被除数最高位的大小,如果被除数最高位上的数比除数小,那么商一定比被除数少一位;如果被除数最高位上的数比除数大或相等,那么商和被除数的位数相等。

  3、除法的验算方法:

  (1)没有余数的除法:商除数=被除数;

  (2)有余数的除法:商除数+余数=被除数;

  4、关于0的一些规定:

  (1)0不能作除数。

  (2)相同的两个数相除商是1。(既然能相除这个数就不是0)

  (3)0除以任何不是0的数都得0;0乘任何数都得0。

  5、乘除法的估算:4舍5入法。

数学进位加法的简单计算方法

  不管多大的数相加其最基本的原则都是20以内的加法原则,20以内进位加法的速算口诀为:几加九进十减一、几加八进十减二、几加七进十减三、几加六进十减四。由于加法具有交换律,所以我们只需要记住这几句就可以了,在100以内的加法中,先观察两个各位数字,找出他们中间较大的数,按口诀进行计算可以很快的算出答案。

数学小数的加法和减法知识点

  1、小数加法、减法:

  (1)把数位(小数点)对齐。

  (2)加减和整数的加减一样。

  2、小数加法、减法的简便计算:

  (1)可使用加法交换律,加法结合律进行简便计算。

  (2)连续减去两个数等于减去这两个数的和。

  (3)加法、减法混合在一起时,可以先加,也可以先减,看先干什么更简单。例如:

  (1)5.6+2.7+4.4

  (2)9.14+1.43+4.57=(5.6+4.4)+2.7=9.14+(1.43+4.57)

  (3)51.27—8.66—1.34

  (4)4.02—3.5+0.98 =51.27—(8.66+1.34)=4.02+0.98—3.5

三年级数学知识点10

  1、只要是*均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

  的"被除数=商×除数+的余数;

  最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商??余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数-余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

小学数学数的读法和写法

  1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

  4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

  6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

  7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

  8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

小学数学必背公式

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数


三年级数学知识点10篇(扩展2)

——三年级上册数学知识点总结10篇

三年级上册数学知识点总结1

  第一单元

  时分秒

  1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

  2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

  3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

  4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

  5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

  6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

  7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

  8、公式。(每两个相邻的时间单位之间的进率是60)

  1时=60分1分=60秒

  半时=30分60分=1时

  60秒=1分30分=半时

  第二、四单元

  1、的几位数和最小的几位数

  的一位数是9,最小的一位数是0。

  的二位数是99,最小的二位数是10

  的三位数是999,最小的三位数是100

  的四位数是9999,最小的四位数是1000

  的五位数是,最小的五位数是

  的三位数比最小的四位数小1。

  2、读数和写数(读数时写汉字写数时写*数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

  的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。的三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  特别注意:中间是0的退位减法,例如:309—189;1000—428等

  8、

  ⑴加法公式:加数+另一个加数=和

  加法的验算:

  ①交换两个加数的位置再算一遍。

  另一个加数+加数=和

  ②和—另一个加数=加数

  ⑵减法公式:被减数—减数=差

  减法的验算:

  ①差+减数=被减数

  ②减数+差=被减数

  ③被减数—差=减数

  特别注意:验算时“验算”别忘了写!!!

三年级上册数学知识点总结2

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:

  1米=10分米,1分米=10厘米,

  1厘米=10毫米,10分米=1米,

  10厘米=1分米,10毫米=1厘米,

  ②进率是100:

  1米=100厘米,1分米=100毫米,

  100厘米=1米,100毫米=1分米

  ③进率是1000:

  1千米=1000米,1公里==1000米,

  1000米=1千米,1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克

  1000千克=1吨1000克=1千克

  倍的认识

  1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

  2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

  多位数乘一位数

  1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

  2、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

  3、因数末尾有几个0,就在积的末尾添上几个0。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程

  每节车厢的人数×车厢的数量=全车的人数

  5、(关于“大约)应用题:

  ①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

  ②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

  ③条件和问题中都有“大约”,求近似数,用估算。→(≈)

  四边形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的*行四边形。

  6、*行四边形的特点:

  ①对边相等、对角相等。

  ②*行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式。

  正方形的周长=边长×4

  正方形的边长=周长÷4,

  长方形的周长=(长+宽)×2

  长方形的长=周长÷2—宽,

  长方形的宽=周长÷2—长

  分数的初步认识

  1、把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

  3、①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

  ②1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数

三年级上册数学知识点总结3

  认识分数

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

  2、分母越大,分数单位越小,的分数单位是1/2

  3、举例说明一个分数的意义:3/7表示把单位“1”*均分成7份,表示这样的3份。还表示把3*均分成7份,表示这样的1份。3/7吨表示把1吨*均分成7份,表示这样的3份。还表示把3吨*均分成7份,表示这样的1份。

  4、4米的1/5和1米的4/5同样长。

  5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

  6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

  7、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

  8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

  9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

  10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

  11、把分数化成小数的方法:用分数的分子除以分母。

  12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

  13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

  14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

  15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

  16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

  17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

  18、求一个数是(占)另一个数的几分之几,用除法列算式计算。

  24时计时法

  1、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

  如:普通计时法24时计时法:上午9时→9时;晚上9时→21时(9+12=21)普通计时法一定要加上“上午”、“下午”等前缀。

  2、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

  ①如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。正确的列式格式为:21时30分—11时=10时30分,不能用电子表的形式相减。

  ②再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的.,可以先计算第一天行驶了多长时间:24—19=5(时),再加上第二天行驶的8个小时:5+8=13(时);

  ③又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  3、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

  运算符号

  如加号(+),减号(—),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。

  数学重要知识点

  1、圆的轴对称性

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  2、圆的中心对称性

  圆是以圆心为对称中心的中心对称图形。

三年级上册数学知识点总结4

  第一单元混合计算

  6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商;5÷0得不到商.

  第二单元观察物体

  计算连加式题时,要按从左往右的顺序依次计算

  连减

  786-284-249=253

  计算连减式题时,可以按从左往右的顺序依次计算,也可以先把两个减数加起来,再从被减数里减去两个减数的和。

  786-(284+249)=253

  加减混合

  259+148-342=65

  不带小括号的加减混合式题的运算顺序,:按从左往右的顺序依次计算。带小括号的加减混合式题的运算顺序:先算小括号里面的,再算小括号外面的。

  里程表中的问题

  求两地间的路程,要找准起点,用较远的路程减去较近的路程就得到两地间的路程

  里程数=终点数-起点数

  第四单元乘与除

  2.月:

  小月:4、6、9、11月

  *月(二月):*年28天

  闰年29天

  3.日历:学会看日历,知道某年某月是星期几

  4.钟表:24时记时法12时记时法

  4.公式:

  1时=

  60分1分=60秒半时=30分

  60分=1时

  60秒=1分30分=半时

  第八单元可能性

  1.‘不可能和一定’,都表示确定的现象。‘可能’,表示不确定的现象。

  2.请用“一定、可能、不可能”来说一说。

  一定:太阳一定从东边升起;月亮一定绕着地球转;地球一定每天都在转动;每天一定都有人出生;人一定要喝水……

  可能:三天后可能下雨;花可能是香的;明天可能有风;下周可能会考试。……

  不可能:太阳不可能从西边升起;地球不可能绕着月亮转;我不可能从出生到现在没吃过一点东西;鲤鱼不可能在陆地上生活;空中不可能盖楼房;我不可能比姐姐大……

三年级上册数学知识点总结5

  (一)面积和面积单位:

  1、要弄清长度单位与面积单位的联系与区别;

  2、要认真审题,弄清题目要求后再做。

  (二)长方形、正方形面积的计算:

  1、正方形:(A)周长=边长×4——使用长度单位

  (B)面积=边长×边长——使用面积单位

  2、长方形:(A)周长=(长+宽)×2——使用长度单位

  (B)面积=长×宽——使用面积单位

  (三)面积单位间的进率

  1、长度单位:米、分米、厘米——进率是10;1米=10分米=100厘米=1000毫米

  2、面积单位:*方厘米、*方分米、*方米——进率是100;

  1*方米=100*方分米,1*方分米=100*方厘米,1*方米=*方厘;

  3、“公顷”(测量菜地面积、果园面积)和“*方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;

  4、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。

  5、计量路程或测量铁路、河流等比较长的物体时,一般用千米(km)作单位,又叫公里。(四)各图形的特点:长方形的特点:对边相等,四个角都是直角;

  正方形的特点:四条边相等,四个角都是直角;

  *行四边形的特点:两组对边*行且相等。

  小学数学学习方法

  小学数学是为学生未来的数学学习打基础的,清晰了解所学知识对于孩子来说十分关键,而这就要求对所学的知识要及时做一些归纳与总结,小学数学错题集的归纳和整理,学习好的学生一般都会有自己的错题集,错题集非常的重要,学习过程当中,自己容易做错的题目完全可以抄写在数学错题集上面。这样做的目的就是能够查漏补缺,数学学好是一个缓慢的过程。

  小学数学表内除法知识点

  一、*均分

  1、*均分的含义:把一些物品分成几份,每份分得同样多,叫*均分。

  2、*均分的方法:

  (1)把一些物品按指定的份数进行*均分时,可以一个一个的分,也可以几个几个的分,直到分完为止。

  (2)把一些物品按每几个一份*均分,分时可以想:这个数可以分成几个这样的一份。

  二、除法

  1、除法算式的含义:只要是*均分的过程,就可以用除法算式表示。

  2、除法算式的.读法:通常按照从前往后顺序读,“÷”读作除以,“=”读作等于,其他读法不变。

  3、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。

  三、用2~6的乘法口诀求商

  1、求商的方法:

  (1)用*均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘等于被除数。

  四、解决问题

  1、解决有关*均分问题的方法:

  总数÷每份数=份数被除数=商×除数

  总数÷份数=每份数被除数=商×除数+余数

  一个因数=积÷另一个因数数除=被除数÷商

  2、用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

三年级上册数学知识点总结6

  1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  2、一个因数中间有0的乘法:

  ① 0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  ③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  3、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数

  路程÷时间=速度

  路程÷速度=时间

  5、(关于“大约)应用题:

  问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)

  例:387×5≈

  把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950。

  所以:387×5≈1950

  小学数*算定律

  1、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)

  2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。

  3、乘法交换律:a×b=b×a交换因数的位置积不变。

  4、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。

  5、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。

  数学三角形体积知识点

  三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

  体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

三年级上册数学知识点总结7

  1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  2、一个因数中间有0的乘法:

  ① 0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  ③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  3、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数

  路程÷时间=速度

  路程÷速度=时间

  5、(关于“大约)应用题:

  问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)

  例:387×5≈

  把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950。

  所以:387×5≈1950

小学数*算定律

  1、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)

  2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。

  3、乘法交换律:a×b=b×a交换因数的位置积不变。

  4、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。

  5、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。

数学三角形体积知识点

  三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

  体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

三年级上册数学知识点总结8

  1、有4条直的边和4个角的封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的*行四边形。

  6、*行四边形的特点:①对边相等、对角相等。

  ②*行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式:

  长方形的周长=(长+宽)×2

  变式:①长方形的长=周长÷2—宽

  ②长方形的宽=周长÷2—长

  正方形的周长=边长×4

  变式:正方形的边长=周长÷4

数学圆的周长知识点

  环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。

  推导圆周长最简洁的办法是用积分。在*面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。如果不需要更多的理论讨论,上面的做法就足够了。

小学数学简便计算知识点

  1、连加的简便计算:

  ①使用加法结合律(把和是整十、整百、整千的数结合在一起)

  ②个位:1与9,2与8,3与7,4与6,5与5,结合。

  ③十位:0与9,1与8,2与7,3与6,4与5,结合。

  2、连减的简便计算:

  ①连续减去几个数就等于减去这几个数的和。如:106—26—74=106—(26+74)

  ②减去几个数的和就等于连续减去这几个数。如:106—(26+74)=106—26—74

  3、加减混合的简便计算:

  第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38—23=123—23+38 146—78+54=146+54—78

  4、连乘的简便计算:

  使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等看见25就去找4,看见125就去找8;

  5、连除的简便计算:

  ①连续除以几个数就等于除以这几个数的积。

  ②除以几个数的积就等于连续除以这几个数。

  6、乘、除混合的简便计算:

  第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13 7。乘法分配律的应用:

  ①类型一:(a+b)×c(a—b)×c= a×c+b×c = a×c—b×c

  ②类型二:a×c+b×c a×c—b×c=(a+b)×c =(a—b)×c

  ③类型三:a×99+a a×b—a= a×(99+1)= a×(b—1)

  ④类型四:a×99 a×102= a×(100—1)= a×(100+2)= a×100—a×1 = a×100+a×2

三年级上册数学知识点总结9

  小学三年级要重视和加强发展学生“空间关系”的知觉能力。数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。下面给大家带来关于人教版数学三年级上册知识点归纳总结,希望对你们有所帮助。

第一单元时分秒

  1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。(时针最短,秒针最长)

  2、每两个相邻的时间单位之间的进率是60

  1时=60分60分=1时1分=60秒60秒=1分

  半时=30分30分=半时

  3、(1)计量很短的时间,常用比分更小的单位——秒。

  (2)计算一段时间,可以用结束的时刻减去开始的时刻。

  经过时间=结束时刻—开始时刻。

  4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

  5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

  6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

  7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

第二、四单元万以内的加法和减法

  1、笔算加减法时:(1)相同数位要对齐;(2)从个位算起。(3)哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10;如果前一位是0,则再从前一位退1。

  2、两个三位数相加的和:可能是三位数,也有可能是四位数。

  3、加法公式:加数+加数=和

  加法的验算:①交换两个加数的位置再算一遍。

  ②加数=和-另一个加数

  4、减法公式:被减数-减数=差

  减法的验算:①被减数=差+减数②减数=被减数-差

  5、求一个数的近似数:

  看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

  最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。

第三单元测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  长度单位从大到小:千米>米>分米>厘米>毫米

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

  ①进率是10:1米=10分米, 1分米=10厘米, 1厘米=10毫米,

  10分米=1米, 10厘米=1分米, 10毫米=1厘米,

  ②进率是100:1米=100厘米, 100厘米=1米,

  1分米=100毫米, 100毫米=1分米

  ③进率是1000:1千米=1000米, 1公里=1000米,

  1000米=1千米, 1000米= 1公里

  5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  6、相邻两个质量单位进率是1000。

  1吨=1000千克1000千克= 1吨

  1千克=1000克1000克=1千克

  7、单位换算:小到大除,大到小乘。

第五单元倍的认识

  求一个数是另一个数的几倍用除法:“是前”除以“是后”。

  求一个数的几倍是多少用乘法。

第六单元多位数乘一位数

  1、多位数乘一位数的笔算方法:(1)相同数位对齐,(2)从个位乘起.(用一位数分别去乘多位数每一位上的数,与哪一位相乘,积就写在哪一位下面。)(3)哪一位上的数相乘满几十,就向前一位进几,(4)搬答案。

  2、一个因数中间有0的乘法:

  0和任何数相乘都得0

  3、一个因数末尾有0的乘法的简便计算:

  (1)先算0前面的数(2)添0

  1和任何不是0的数相乘还得原来的数。

  三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:总价=单价×数量

  单价=总价÷数量数量=总价÷单价

  问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,一般都是求近似数,用估算。→(≈)

第七单元长方形和正方形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,对边相等,四个角都是直角。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的*行四边形。

  6、*行四边形的特点:对边*行且相等、对角相等。

  7、封闭图形一周的长度,就是它的周长。

  8、公式:长方形的周长=(长+宽)×2

  ①长方形的长=周长÷2-宽②长方形的宽=周长÷2-长

  ①正方形的周长=边长×4 ②正方形的边长=周长÷4,

第八单元分数的初步认识

  1、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  2、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。

  几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  3、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

  4、比较大小的方法:

  ①分子相同,看分母,分母越大,分数反而越小,分母越小,分数反而越大。

  ②分母相同,看分子,分子越大,分数越大,分子越小,分数越小。

  5、同分母的分数加、减法的计算方法:分母不变,分子相加、减。

  1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

  6、求一个数是另一个数的几分之几是多少的计算方法:

  先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

  第九单元数学广角——集合

  会用集合思想解决实际问题。

三年级上册数学知识点总结10

《四边形》

1、知识点:认识四边形的特征,掌握长方形、正方形的特征

  ①能正确辨认四边形。

  ②掌握长方形、正方形的特征。

  注:应注重引导学生在长、正方形的对比中找出图形边和角的特征。

2、知识点:在方格纸上画出长方形和正方形

  能在方格纸上画出长方形和正方形。

3、知识点:初步认识*行四边形

  ①能正确辨认*行四边形。

  ②能感悟到*行四边形易变形的特性。

  ③能在方格纸上正确画出*行四边形。

  注:学生寻找*行四边形时,要注意与长方形、正方形的区别,逐步让学生在对比中感悟*行四边形的特征。

4、知识点:周长的含义

  结合具体情境理解周长的含义。

5、知识点:计算长方形和正方形的周长

  ①能正确计算长方形、正方形等*面图形的周长。

  ②能运用周长的知识解决实际问题。

6、知识点:长度和周长的估计

  在估量物体长度的过程中,逐步建立空间观念,养成估计的意识和习惯。

  注:应注重引导学生说出估计相应长度的依据,逐步建立长度单位的表象。

《测量》

1、知识点:长度单位毫米、分米、千米及1毫米、1分米、1千米

  ①认识长度单位毫米、分米、千米,建立1毫米、1分米、1千米的长度观念。

  ②根据具体情境选择恰当的长度单位。

2、知识点:单位间的进率

  ①知道1厘米=10毫米,1分米=10厘米,1米=10分米,1千米(公里)=1000米。

  ②会进行简单的单位换算。

3、知识点:估计、测量物体的长度

  能估计一些物体的长度,会选择不同的方式准确测量给定物体的长度。

4、知识点:质量单位吨及1吨

  ①认识质量单位“吨”,建立1吨的质量观念。

  ②能根据具体情境选择恰当的质量单位。

5、知识点:1吨=1000千克

  知道1吨=1000千克,并会进行吨与千克的单位换算。


三年级数学知识点10篇(扩展3)

——三年级数学知识点10篇

三年级数学知识点1

  分数的初步认识

  1、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。

  ②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

  5、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  6、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

多项式定义

  在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

  对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

数学知识点

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

三年级数学知识点2

  (一)面积和面积单位:

  1、要弄清长度单位与面积单位的联系与区别;

  2、要认真审题,弄清题目要求后再做。

  (二)长方形、正方形面积的计算:

  1、正方形:(A)周长=边长×4——使用长度单位

  (B)面积=边长×边长——使用面积单位

  2、长方形:(A)周长=(长+宽)×2——使用长度单位

  (B)面积=长×宽——使用面积单位

  (三)面积单位间的进率

  1、长度单位:米、分米、厘米——进率是10;1米=10分米=100厘米=1000毫米

  2、面积单位:*方厘米、*方分米、*方米——进率是100;

  1*方米=100*方分米,1*方分米=100*方厘米,1*方米=*方厘;

  3、“公顷”(测量菜地面积、果园面积)和“*方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;

  4、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。

  5、计量路程或测量铁路、河流等比较长的物体时,一般用千米(km)作单位,又叫公里。(四)各图形的特点:长方形的特点:对边相等,四个角都是直角;

  正方形的特点:四条边相等,四个角都是直角;

  *行四边形的特点:两组对边*行且相等。

小学数学学习方法

  小学数学是为学生未来的数学学习打基础的,清晰了解所学知识对于孩子来说十分关键,而这就要求对所学的知识要及时做一些归纳与总结,小学数学错题集的归纳和整理,学习好的学生一般都会有自己的错题集,错题集非常的重要,学习过程当中,自己容易做错的题目完全可以抄写在数学错题集上面。这样做的目的就是能够查漏补缺,数学学好是一个缓慢的过程。

小学数学表内除法知识点

  一、*均分

  1、*均分的含义:把一些物品分成几份,每份分得同样多,叫*均分。

  2、*均分的方法:

  (1)把一些物品按指定的份数进行*均分时,可以一个一个的分,也可以几个几个的分,直到分完为止。

  (2)把一些物品按每几个一份*均分,分时可以想:这个数可以分成几个这样的一份。

  二、除法

  1、除法算式的含义:只要是*均分的过程,就可以用除法算式表示。

  2、除法算式的读法:通常按照从前往后顺序读,“÷”读作除以,“=”读作等于,其他读法不变。

  3、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。

  三、用2~6的乘法口诀求商

  1、求商的方法:

  (1)用*均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘等于被除数。

  四、解决问题

  1、解决有关*均分问题的方法:

  总数÷每份数=份数被除数=商×除数

  总数÷份数=每份数被除数=商×除数+余数

  一个因数=积÷另一个因数数除=被除数÷商

  2、用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

三年级数学知识点3

含义:

  计量很重的物品或大宗物品的质量,通常用吨做单位,吨用符号t表示。

  举例:1袋大米约重10千克,100袋大米约重1000千克,也就是1吨。

单位换算:

  1吨=1000千克

  2吨=20xx千克

方法分析:

  1吨=1000千克,2吨是2个1吨,就是2个1000千克,是20xx千克,即2吨=20xx千克。

方法归纳:

  把较大的质量单位换算成相邻的较小的质量单位时,就是在所换算数的末尾添上3个0,把较小的质量单位换算成相邻的较大的质量单位时,就是在所换算数的末尾去掉3个0。

生活中吨的应用:

  吨的确是个比千克重的多的单位,那么,在计量较重的或大宗物品的质量时,通常用吨作单位?例如“一列货车每节车厢的载重量是50吨,一般一辆货车大约有30—50节车厢,也就是说可以运送200吨左右的货物。实际上,生活中很多物品的质量是用吨来作单位的。比如:嫦娥一号起飞重量为2。35吨;空集装箱本身的重量在2吨—5吨;亚洲象*均重3—4吨,非洲象*均五到六吨左右等等。

三年级数学知识点4

位置与方向

  1、①(东与西)相对,(南与北)相对,

  (东南—西北)相对,(西南—东北)相对。

  ②清楚以谁为标准来判断位置。

  ③理解位置是相对的,不是绝对的。

  2、地图通常是按(上北、下南、左西、右东)来绘制的。

  (做题时先标出北南西东。)

  3、会看简单的路线图,会描述行走路线。

  一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。

  4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

  5、生活中的方位知识:

  ①北斗星永远在北方。

  ②影子与太阳的方向相对。

  ③早上太阳在东方,中午在南方,傍晚在西方。

  ④风向与物体倾斜的方向相反。

  (刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)

除数是一位数的除法

  1、除数是一位数的除法计算方法:从被除数的位除起,先看被除数的位,如果不够除,就看前两位,除到被除数的哪一位就把商写在哪一位的上面,余数要比除数小。

  2、没有余数时:被除数=商×除数。有余数时:被除数=商×除数+余数。

  3、“0”不能做除数,做除数没有意义,0除以任何不是0的数都得0。

  4、想:商中间有0的除法,在什么情况下商中间才有0?

  商末尾有0的除法,在什么情况下商末尾才有0?

特殊统计图:

  当数据比较大而且各个数据间的差距比较小的时候,为了反映这组数据的"差异性,我们用起始格表示比较大的数量,而其他格表示较小的数量的统计图,我们称之为“特殊统计图”。

  1、分析统计图时首先要清楚横轴和纵轴各表示什么,每格代表多少。

  2、*均数=总数量÷总份数。

  3、*均数能较好地反映一组数据的总体情况。

  4、在计算*均数之前,要注意先估一估*均数的范围应该大约是多少,然后再进行计算,在算各个数据的总和时,应注意算2次以上以保证计算结果的准确性。

三年级数学知识点5

  1数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。

  2数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。

  3数据分析的步骤和应用:

  数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:

  (1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。

  (2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。

  (3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

三年级数学知识点6

  一、时分秒

  1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长

  2、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

  3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

  4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

  5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

  6、公式。(每两个相邻的时间单位之间的进率是60)

  1时=60分;1分=60秒;60分=1时;

  7、常用的时间单位:时、分、秒、年、月、日、世纪等。

  1世纪=100年,1年=12个月

  二、分数的初步认识

  1、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形*均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

  5、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

  三、测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  6、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

  四、万以内的加法和减法

  1、读数和写数(读数时写汉字写数时写*数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  2、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

  4、求一个数的.近似数:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

  五、倍的认识

  1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

  2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

  六、长方形和正方形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的*行四边形。

  6、*行四边形的特点:①对边相等、对角相等。②*行四边形容易变形。(三角形不容易变形)7、封闭图形一周的长度,就是它的周长。

  8、公式:长方形的周长=(长+宽)×2或长×2+宽×2长方形的长=周长÷2—宽长方形的宽=周长÷2—长正方形的周长=边长×4正方形的边长=周长÷4

  七、多位数乘一位数

  1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

  2、

  ①0和任何数相乘都得0;

  ②1和任何不是0的数相乘还得原来的数。

  3、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  4、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  5、一个因数中间有0的乘法:

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  7、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)

  8、减法的验算方法:

  ①用被减数减去差,看结果是不是等于减数

  ②用差加减数,看结果是不是等于被减数。

  9、加法的验算方法:

  ①交换两个加数的位置再算一遍。

  ②用和减一个加数,看结果是不是等于另一个加数。

三年级数学知识点7

  ☆内容提要☆

  一、基本概念

  1.方程、方程的解(根)、方程组的解、解方程(组)

  2.分类:

  二、解方程的依据等式性质

  1.a=ba+c=b+c

  2.a=bac=bc0)

  三、解法

  1.一元一次方程的解法:去分母去括号移项合并同类项

  系数化成1解。

  2.元一次方程组的解法:⑴基本思想:消元⑵方法:①代入法

  ②加减法

  四、一元二次方程

  1.定义及一般形式:

  2.解法:⑴直接开*方法(注意特征)

  ⑵配方法(注意步骤推倒求根公式)

  ⑶公式法:

  ⑷因式分解法(特征:左边=0)

  3.根的判别式:

  4.根与系数顶的关系:

  逆定理:若,则以为根的一元二次方程是:。

  5.常用等式:

  五、可化为一元二次方程的方程

  1.分式方程

  ⑴定义

  ⑵基本思想:

  ⑶基本解法:①去分母法②换元法(如,)

  ⑷验根及方法

  2.无理方程

  ⑴定义

  ⑵基本思想:

  ⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法

  3.简单的二元二次方程组

  由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

  六、列方程(组)解应用题

  一概述

  列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

  ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

  ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

  ⑶用含未知数的代数式表示相关的量。

  ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

  ⑸解方程及检验。

  ⑹答案。

  综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  二常用的相等关系

  1.行程问题(匀速运动)

  基本关系:s=vt

  ⑴相遇问题(同时出发):

  ⑵追及问题(同时出发):

  若甲出发t小时后,乙才出发,而后在B处追上甲,则

  ⑶水中航行:

  2.配料问题:溶质=溶液浓度

  溶液=溶质+溶剂

  3.增长率问题:

  4.工程问题:基本关系:工作量=工作效率工作时间(常把工作量看着单位1)。

  5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

  三注意语言与解析式的互化

  如,多、少、增加了、增加为(到)、同时、扩大为(到)、扩大了、

  又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

  四注意从语言叙述中写出相等关系。

  如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算

  如,小时分钟的换算;s、v、t单位的一致等。

三年级数学知识点8

  面积和面积单位

  1.常用的面积单位有:(*方厘米)、(*方分米)、(*方米)。

  2.理解面积的意义和面积单位的意义。

  面积:物体表面或封闭图形的大小,叫做它们的面积。

  1*方米:边长是1米的正方形,它的面积是1*方米。

  1*方分米:边长是1分米的正方形,它的面积是1*方分米。

  1*方厘米:边长是1厘米的正方形,它的面积是1*方厘米。

  3.在生活中找出接近于1*方厘米、1*方分米、1*方米的例子。例如1*方厘米(指甲盖)、1*方分米(电脑光盘或电线插座)、1*方米(教室侧面的小展板)。

  4.区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。

  5.比较两个图形面积的大小,要用(统一)的面积单位来测量。

  背熟:

  (1)边长(1厘米)的正方形,面积是(1*方厘米)。

  (反过来也要会说。面积是1*方厘米的正方形,它的边长是1厘米。)

  (2)边长(1分米)的正方形,面积是(1*方分米)。

  (3)边长(1米)的正方形,面积是(1*方米)。

  (4)边长是(100米)的正方形面积是(1公顷),也就是(*方米)。

  (5)边长是(1千米)的正方形面积是1*方千米。

  面积单位进率和土地面积单位:

  1.常用的土地面积单位有(公顷)和(*方千米)。

  1公顷:边长是100米的正方形,它的面积是1公顷。

  1*方千米:边长是1千米的正方形,它的面积是1*方千米。

  1公顷=*方米

  1*方千米=100公顷

  1*方千米=*方米

  2.正确理解并熟记相邻的面积单位之间的进率。

  ①进率100:

  1*方米= 100*方分米

  1*方分米= 100*方厘米

  1*方千米= 100公顷

  ②进率:

  1公顷= *方米

  1*方米= *方厘米

  ③进率:

  1*方千米= *方米

  ④相邻两个常用的长度单位之间的进率是( 10 )。

  相邻两个常用的面积单位之间的进率是( 100 )。

  背熟公式

  1、周长公式:

  长方形的周长= (长+宽)× 2

  长=周长÷2-宽

  或者:(周长-长×2)÷2=宽

  宽=周长÷2-长

  或者:(周长-宽×2)÷2=长

  正方形的周长=边长×4

  正方形的边长=周长÷4

  2 、面积公式:

  长方形的面积=长×宽

  正方形的面积=边长×边长

  长方形的周长=(长+宽)×2

  正方形的周长=边长×4

  已知面积求长:长=面积÷宽

  已知面积求边长:边长=面积开*方

  已知周长求长:长=周长÷2 -宽

  已知面积求边长:边长=面积÷4

  A、正确区分长方形和正方形的周长和面积的意义,并能正确运用上面的4个计算公式求周长和面积。

  归类:什么样的问题是求周长?(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等)什么样的问题是求面积?或与面积有关?(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地、裁手帕的等等)

  B、长方形或正方形纸的剪或拼。有两个或两个以上长方形或正方形拼成新的图形后的面积与周长。从一个图形中(通常是长方形)剪掉一个图形(最大的正方形等)求剪掉部分的面积或周长、求剩下部分的面积或周长。要求先画图,再标上所用数据,最后列式计算。

  C、刷墙的(有的中间有黑板、窗户等):用大面积-小面积。

  熟练运用进率进行面积单位之间的换算。掌握换算的方法。

  1、低级单位——高级单位:数量÷它们间的进率

  如:零钱换大钱,张数减少;300*方分米=3*方米

  1、高级单位——低级单位:数量×们间的进率

  如:大钱换零钱,张数增多;5*方千米=500公顷

  注意:

  (1)面积相等的两个图形,周长不一定相等。

  周长相等的两个图形,面积不一定相等。

  (2)大单位换算小单位(乘它们之间的进率)

  小单位换算大单位(除以它们之间的进率)

  (3)长度单位和面积单位的单位不同,无法比较。

  (4)周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长也不一定相等。

数学多位数乘一位数知识点

  1、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数依次去乘多位数的每一位,哪一位上乘得的数积满几十,就向前一位进几。

  2、在乘法里,乘数也叫做因数。

  3、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

数学复习重点归纳

  相遇问题公式

  1.相遇路程=速度和×相遇时间

  2.相遇时间=相遇路程÷速度和

  3.速度和=相遇路程÷相遇时间

  几何知识点

  1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。

  2.角:从一点引出两条射线所组成的图形叫做角。

  3.角的大小:角的大小看两条边*的大小,*的越大,角越大。

  4.小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。角的两边在一条直线上的角叫做*角。*角180°。

  5.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)

  6.*行线:在同一*面内不相交的两条直线叫做*行线。也可以说这两条直线互相*行。

三年级数学知识点9

  教学目标:

  1、让学生探索长方形、正方形的周长计算公式,并能熟练地计算长方形、正方形的周长。让学生学会解决有关长方形、正方形周长计算的简单实际问题。培养学生的观察比较、分析推理能力和空间想象力。

  2、经历探索活动,进行归纳,概括出长方形、正方形周长的计算公式。

  3、让学生体会数学与日常生活的密切联系,初步了解数学的价值,发现日常生活中的数学现象,并有探究的欲望。

  教学重点:探索并发现长方形和正方形周长的计算方法,会求长方形和正方形的周长。

  教学难点:引导学生在探究活动中感悟和发现长方形和正方形周长计算的特殊性。

  教学准备:多媒体课件、教具

  教学过程:

一、导(3分钟)

  1、(课件出示长方形和正方形图片)同学们,你们认识这两个图形吗?你能说一说它们分别有什么特点吗?

  2、你能分别指出这个长方形和正方形的周长吗?

  3、看来同学们上节课的知识掌握得不错,今天这节课我们一起来探究长方形和正方形的周长计算方法。

  板书课题“长方形、正方形的周长计算”

  二、思(10分钟)

  (一)探究长方形周长

  1、计算长方形的周长,需要知道什么?

  2、可以怎样知道长和宽的长度?需要测量哪几条边?为什么?

  3、学生活动:请同学们拿出学具长方形进行测量并记录数据。

  测量完了请你在学习单上算一算这个长方形的周长。

  (二)探究正方形的周长

  1、我们需要测量正方形几条边的长度?

  2、请同学们拿出学具正方形进行测量并记录数据。

  测量完了请你在学习单上算一算这个正方形的周长。

 三、议(6分钟)

  算完后同桌间交流计算周长的方法。

  四、展(8分钟)

  (一)长方形的周长计算

  生汇报交流大致以下三种

  生1:6+4+6+4=20(厘米)

  师:你能说说你列的算式是什么意思吗?

  生1:我是把长方形的四条边一条一条的加起来,就得到了它的周长

  长+宽+长+宽=长方形的周长(结合他所说用PPT动态演示)

  生2:6×2+4×2=20厘米

  师:你为什么这样列式?请你说一说。

  生2:长方形有两条长,两条宽,所以长方形的周长=长×2+宽×2(结合他所说用PPT动态演示)

  生3:(6+4)×2=20(厘米)

  师:6+4算的是什么?为什么又乘2?

  生3:6+4表示长加宽的和,表示周长的一半。要求长方形的周长所以要乘2。

  让生多说说并理解6+4表示先算一条长加一条宽表示周长的一半。(结合他所说用PPT动态演示)

  师生共同小结并板书长方形的周长=(长+宽)×2

  (二)正方形的周长计算

  (1)5+5+5+5=20(厘米),把正方形四条边全部加起来得到它的周长。

  (2)5×4=20(厘米),每条边都相等,有4条这样的边。

  五、评(3分钟)

  师:刚刚同学们总结了几种不同的方法,这几种方法计算长方形的周长都必须要知道这个长方形的什么?

  师:现在我们发现长方形的周长有这么多计算方法,请同学们同桌间互相说说如何计算一个长方形的周长。

  师:请同学们说说你喜欢哪种方法?并说说这种方法的意思。(允许学生方法的多样性)

  师生共同小结并板书长方形的周长=(长+宽)×2

  师:刚刚同学们总结了几种不同的方法,这几种方法计算长方形的周长都必须要知道这个长方形的什么?

  (学生通过观察思考认识到求长方形的周长必须要知道长方形的长和宽)

  师:请同学们说说你喜欢哪种方法?并说说这种方法的意思。

  (允许学生方法的多样性)

  师:现在我们发现长方形的周长有这么多计算方法,请同学们同桌间互相说说如何计算一个长方形的周长。

  师生共同小结:在计算长方形周长的各种方法中不管怎样列算式,求出的都是围成这个长方形的四条边的长度的和,以后大家可以用自己喜欢的方法计算长方形的周长。

  师:计算正方形的周长的这几种方法你喜欢哪种?为什么?(第二种最简单更好计算)

  小结并板书:正方形周长=边长×4

  师:要计算正方形的周长必须要知道什么条件?

  六、练(10分钟)

  1、完成数学书85页做一做。

  2、课本第88页第9题。

  七、布置作业

  作业:课本第87页练习十七,第1题~第3题。

三年级数学知识点10

  一、年月日:

  一三五七八十腊(12月),

  三十一天永不差;

  四六九冬(11月)三十日;

  *年二月二十八,

  闰年二月把一加.

  二、100以内的质数口诀:

  2、3、5、7和11,

  13后面是17,

  19、23、29,(十九、二三、二十九)

  31、37、41,(三一、三七、四十一)

  43、47、53,(四三、四七、五十三)

  59、61、67,(五九、六一、六十七)

  71、73、79,(七一、*、七十九)

  83、89、97. (八三、八九、九十七)

  三、多位数读法歌:

  读数要从高位起,哪位是几就读几,

  每级末尾若有零,不必读出记心里,

  其他数位连续零,只读一个就可以,

  万级末尾加读万,亿级末尾加读亿.

  四、多位数写法歌:

  写数要从高位起,哪位是几就写几,

  哪一位上没单位,用0占位要牢记.

  五、多位数大小比较歌:

  位数不同比大小,位数多的大,位数少的小,

  位数相同比大小,高位比起就知道.

  六、运算顺序歌:

  打竹板,响连天,各位同学听我言,

  今天不把别的表,单把四则运算聊一聊,

  混合试题要计算,明确顺序是关键.

  同级运算最好办,从左到右依次算,

  两级运算都出现,先算乘除后加减.

  遇到括号怎么办,小括号里算在先,

  中括号里后边算,次序千万不能乱,

  每算一步都检查,又对又快喜心间.

  七、除的意义:

  看到除,

  圈一圈,

  除字前面是除数,

  除字后面被除数,

  位置交换别忘了.

  八、商中间或末尾有0的除法:

  我是0,本事大,

  除法运算显神通.

  不够商1我来补,

  有了空位我就坐.

  别人要想把我除,

  常胜将军总是我.

  九、认识钟表:

  跑的最快是秒针,个儿高高,身材好;

  跑的最慢是时针,个儿短短,身材胖;

  不高不矮是分针,匀速跑步作用大.

  十、量角:

  中心对顶点,

  0线对一边,

  一边读刻度,

  内外要分辨.

  十一、计量单位间的换算:

  大化小,用乘好.

  小化大,除不差.

  十二、大月、小月的记忆:

  七前单月大,

  八后双月大.

  十三、我是1厘米:

  1厘米,很淘气,仔细找,才见你.

  指甲盖1厘米,伸出手指比一比.

  长短和我差不多,大约就是一厘米.

  100个我是1米,我是米的小兄弟,

  物体长了别用我,要不一定累死你.

  十四、大于号、小于号的用法:

  大于号、小于号.

  开口朝着大数笑.

  温馨提示:在数学学习方面掌握好数学知识点很重要,由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,学好数学就并不困难,希望这篇小学三年级数学知识点总结可以对大家有所帮助。


三年级数学知识点10篇(扩展4)

——小学三年级上册数学知识点归纳3篇

小学三年级上册数学知识点归纳1

  小学三年级上册数学知识点:认识分数

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

  2、分母越大,分数单位越小,的分数单位是1/2

  3、举例说明一个分数的意义:3/7表示把单位“1”*均分成7份,表示这样的3份。还表示把3*均分成7份,表示这样的1份。3/7吨表示把1吨*均分成7份,表示这样的3份。还表示把3吨*均分成7份,表示这样的1份。

  4、4米的1/5和1米的4/5同样长。

  5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

  6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

  7、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

  8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

  9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

  10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

  11、把分数化成小数的方法:用分数的分子除以分母。

  12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

  13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

  14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

  15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

  16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

  17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

  18、求一个数是(占)另一个数的几分之几,用除法列算式计算。

  小学三年级上册数学知识点:24时计时法

  1、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

  如:普通计时法24时计时法:上午9时→9时;晚上9时→21时(9+12=21)普通计时法一定要加上“上午”、“下午”等前缀。

  2、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

  ①如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。正确的列式格式为:21时30分—11时=10时30分,不能用电子表的形式相减。

  ②再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24—19=5(时),再加上第二天行驶的8个小时:5+8=13(时);

  ③又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  3、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

  小学三年级上册数学知识点:两位数乘两位数

  1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

  2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

  3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

  4、有大约字样的一般要估算。

  5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

  6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

  7、相关公式:因数×因数=积积÷因数=另一个因数运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。

  小学三年级上册数学知识点:除数是一位数的除法

  1、只要是*均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

  的被除数=商×除数+的余数;

  最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数—余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

  小学三年级上册数学知识点:年、月、日

  1、认识年、月、日。认识*年和闰年。

  2、记忆大小月的方法

  3、一年分四个季度:1、2、3月第一季度;

  4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  5、普通记时法与24时记时法的转换。

  6、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。

  7、大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。

  8、小月:有30天的月份是大月。小月有4月、6月、9月、11月。

  9、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

  10、一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  *年和闰年

  1、*年:2月有28天的月份是*年,*年有365天。

  2、闰年:2月有29天的月份是*年,*年有365天。

  3、*年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的,必须除以400没有余数才是闰年。

小学三年级上册数学知识点归纳2

  小学三年级上册数学知识点:认识分数

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

  2、分母越大,分数单位越小,的分数单位是1/2

  3、举例说明一个分数的意义:3/7表示把单位“1”*均分成7份,表示这样的3份。还表示把3*均分成7份,表示这样的1份。3/7吨表示把1吨*均分成7份,表示这样的3份。还表示把3吨*均分成7份,表示这样的1份。

  4、4米的1/5和1米的4/5同样长。

  5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

  6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

  7、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

  8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

  9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

  10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

  11、把分数化成小数的方法:用分数的分子除以分母。

  12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

  13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

  14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

  15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

  16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

  17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

  18、求一个数是(占)另一个数的几分之几,用除法列算式计算。

  小学三年级上册数学知识点:24时计时法

  1、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

  如:普通计时法24时计时法:上午9时→9时;晚上9时→21时(9+12=21)普通计时法一定要加上“上午”、“下午”等前缀。

  2、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

  ①如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。正确的列式格式为:21时30分—11时=10时30分,不能用电子表的形式相减。

  ②再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24—19=5(时),再加上第二天行驶的8个小时:5+8=13(时);

  ③又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  3、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

  小学三年级上册数学知识点:两位数乘两位数

  1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

  2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

  3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

  4、有大约字样的一般要估算。

  5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

  6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

  7、相关公式:因数×因数=积积÷因数=另一个因数运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。

  小学三年级上册数学知识点:除数是一位数的除法

  1、只要是*均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

  的被除数=商×除数+的余数;

  最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数—余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

  小学三年级上册数学知识点:年、月、日

  1、认识年、月、日。认识*年和闰年。

  2、记忆大小月的方法

  3、一年分四个季度:1、2、3月第一季度;

  4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  5、普通记时法与24时记时法的转换。

  6、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。

  7、大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。

  8、小月:有30天的月份是大月。小月有4月、6月、9月、11月。

  9、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

  10、一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  *年和闰年

  1、*年:2月有28天的月份是*年,*年有365天。

  2、闰年:2月有29天的`月份是*年,*年有365天。

  3、*年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的,必须除以400没有余数才是闰年。

小学三年级上册数学知识点归纳3

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:

  1米=10分米,1分米=10厘米,

  1厘米=10毫米,10分米=1米,

  10厘米=1分米,10毫米=1厘米,

  ②进率是100:

  1米=100厘米,1分米=100毫米,

  100厘米=1米,100毫米=1分米

  ③进率是1000:

  1千米=1000米,1公里==1000米,

  1000米=1千米,1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克

  1000千克=1吨1000克=1千克

  倍的认识

  1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

  2、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

  3、求一个数的几倍是多少用乘法;这个数×倍数=这个数的几倍

  长方形和正方形

  1、有4条直的边和4个角的封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的*行四边形。

  6、*行四边形的特点:

  ①对边相等、对角相等。

  ②*行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式:

  长方形的周长=(长+宽)×2

  变式:

  ①长方形的长=周长÷2—宽

  ②长方形的宽=周长÷2—长

  正方形的周长=边长×4

  变式:正方形的边长=周长÷4

  中括号在数学中的含义

  在四则运算中,表示计算顺序,在小括号之后、大括号之前;表示两个整数的最小公倍数;表示取未知数的整数部分;在函数中,表示函数的闭区间;在线性代数中,表示矩阵;正则表达式中表示字符集合。

  全等三角形的判定定理

  ⑴边边边:三边对应相等的两个三角形全等。

  ⑵边角边:两边和它们的夹角对应相等的两个三角形全等。

  ⑶角边角:两角和它们的夹边对应相等的两个三角形全等。

  ⑷角角边:两角和其中一个角的对边对应相等的两个三角形全等。

  ⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。


三年级数学知识点10篇(扩展5)

——一年级数学知识点总结3篇

一年级数学知识点总结1

第一单元

  准备课

  1、数一数

  数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

  2、比多少

  同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

  比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

  比较两种物体的多或少时,可以用一一对应的方法。

第二单元

  位置

  1、认识上、下

  体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

  2、认识前、后

  体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

  同一物体,相对于不同的参照物,前后位置关系也会发生变化。

  从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

  3、认识左、右

  以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

  要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

第三单元

  1-5的认识和加减法

  一、1--5的认识

  1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。

  2、1—5各数的数序

  从前往后数:1、2、3、4、5.

  从后往前数:5、4、3、2、1.

  3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。

  二、比大小

  1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。

  2、填“>”或“<”时,开口对大数,尖角对小数。

  三、第几

  1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

  2、区分“几个”和“第几”

  “几个”表示物体的多少,而“第几”只表示其中的一个物体。

  四、分与合

  数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.

  把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

  五、加法

  1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

  2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

  六、减法

  1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。

  2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

  七、0

  1、0的意义:0表示一个物体也没有,也表示起点。

  2、0的读法:0读作:零

  3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。

  4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.

  如:0+8=89-0=94-4=0

第四单元

  认识图形

  1、长方体的特征:长长方方的,有6个**的面,面有大有小。

  如图:

  2、正方体的特征:四四方方的,有6个**的面,面的大小一样。

  如图:

  3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。

  如图:

  4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。

  5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。

第五单元

  6-10的认识和加减法

  一、6—10的认识:

  1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

  2、10以内数的顺序:

  (1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

  (2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

  3、比较大小:按照数的顺序,后面的数总是比前面的数大。

  4、序数含义:用来表示物体的次序,即第几个。

  5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

  记忆数的组成时,可由一组数想到调换位置的另一组。

  二、6—10的加减法

  1、10以内加减法的计算方法:根据数的组成来计算。

  2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

  3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

  三、连加连减

  1、连加的"计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

  2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

  四、加减混合

  加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

第六单元

  11-20各数的认识

  1、数数:根据物体的个数,可以用11—20各数来表示。

  2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、

  3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。

  4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。

  5、数位:从右边起第一位是个位,第二位是十位。

  6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。

  7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。

  8、十加几、十几加几与相应的减法

  (1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。

  如:10+5=1517-7=1018-10=8

  (2)、十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。

  (3)、加减法的各部分名称:

  在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。

  在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。

  9、解决问题

  求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。

第七单元

  认识钟表

  1、认识钟面

  钟面:钟面上有12个数,有时针和分针。

  分针:钟面上又细又长的指针叫分针。

  时针:钟面上又粗又短的指针叫时针。

  2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。

  3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。

  4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00

第八单元

  20以内的进位加法

  1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

  利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

  2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

  3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。

  4、解决问题

  (1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

  (2)求总数的实际问题,用加法计算。

一年级数学知识点总结2

第一单元

  准备课

  1、数一数

  数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

  2、比多少

  同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

  比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

  比较两种物体的多或少时,可以用一一对应的方法。

第二单元

  位置

  1、认识上、下

  体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

  2、认识前、后

  体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

  同一物体,相对于不同的参照物,前后位置关系也会发生变化。

  从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

  3、认识左、右

  以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

  要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

第三单元

  1-5的认识和加减法

  一、1--5的认识

  1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。

  2、1—5各数的数序

  从前往后数:1、2、3、4、5.

  从后往前数:5、4、3、2、1.

  3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。

  二、比大小

  1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。

  2、填“>”或“<”时,开口对大数,尖角对小数。

  三、第几

  1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

  2、区分“几个”和“第几”

  “几个”表示物体的多少,而“第几”只表示其中的一个物体。

  四、分与合

  数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.

  把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

  五、加法

  1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

  2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

  六、减法

  1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。

  2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

  七、0

  1、0的意义:0表示一个物体也没有,也表示起点。

  2、0的读法:0读作:零

  3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。

  4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.

  如:0+8=89-0=94-4=0

第四单元

  认识图形

  1、长方体的特征:长长方方的,有6个**的面,面有大有小。

  如图:

  2、正方体的特征:四四方方的,有6个**的面,面的大小一样。

  如图:

  3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。

  如图:

  4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。

  5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。

第五单元

  6-10的认识和加减法

  一、6—10的认识:

  1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

  2、10以内数的顺序:

  (1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

  (2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

  3、比较大小:按照数的顺序,后面的数总是比前面的数大。

  4、序数含义:用来表示物体的次序,即第几个。

  5、数的组成:一个数(0、1除外)可以由两个比它小的.数组成。如:10由9和1组成。

  记忆数的组成时,可由一组数想到调换位置的另一组。

  二、6—10的加减法

  1、10以内加减法的计算方法:根据数的组成来计算。

  2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

  3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

  三、连加连减

  1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

  2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

  四、加减混合

  加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

第六单元

  11-20各数的认识

  1、数数:根据物体的个数,可以用11—20各数来表示。

  2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、

  3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。

  4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。

  5、数位:从右边起第一位是个位,第二位是十位。

  6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。

  7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。

  8、十加几、十几加几与相应的减法

  (1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。

  如:10+5=1517-7=1018-10=8

  (2)、十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。

  (3)、加减法的各部分名称:

  在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。

  在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。

  9、解决问题

  求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。

第七单元

  认识钟表

  1、认识钟面

  钟面:钟面上有12个数,有时针和分针。

  分针:钟面上又细又长的指针叫分针。

  时针:钟面上又粗又短的指针叫时针。

  2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。

  3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。

  4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00

第八单元

  20以内的进位加法

  1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

  利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

  2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

  3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。

  4、解决问题

  (1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

  (2)求总数的实际问题,用加法计算。


三年级数学知识点10篇(扩展6)

——初二年级数学知识点总结3篇

初二年级数学知识点总结1

一、勾股定理

  1、勾股定理

  直角三角形两直角边a,b的*方和等于斜边c的*方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

  3、勾股数

  满足的三个正整数,称为勾股数。

  常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

二、证明

  1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

  2、三角形内角和定理:三角形三个内角的和等于180度。

  (1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个*角。一般需要作辅助。

  (2)三角形的外角与它相邻的内角是互为补角。

  3、三角形的外角与它不相邻的内角关系

  (1)三角形的一个外角等于和它不相邻的两个内角的和。

  (2)三角形的一个外角大于任何一个和它不相邻的内角。

  4、证明一个命题是真命题的基本步骤

  (1)根据题意,画出图形。

  (2)根据条件、结论,结合图形,写出已知、求证。

  (3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线*行,那么这两条直线也相互*行。


三年级数学知识点10篇(扩展7)

——二年级数学知识点 (精选5篇)

二年级数学知识点1

  一、认识人民币

  1.人民币的分类:(1)按质地分:纸币和硬币。(2)按单位分:元、角、分。

  2.人民币的面值:把人民币上的数和单位合起来读就是人民币的面值。

  3.以“元”为单位的面值有7种:100元、50元、20元、10元、5元、2元、1元。

  4.以“角”为单位的面值有3种:5角、2角、1角。

  5.以“分”为单位的面值有3种:5分、2分、1分。

  6.要点提示:元是人民币的基本单位。

  7.难点点拨:元是最大的人民币单位,分是最小的人民币单位。

  8.重点提示:1元等于10角,几元就等于几十角;几角就等于几十分;1元等于100分。

二、元、角、分之间的进率

  1.1元=10角;1角=10分;1元=100分

  2.要点提示:元、角、分每相邻两个单位之间的进率是10。

三、购物付款方法

  1.购物付款有多种方法,无论用什么方法付款,付款的总额都是一样的。

  2.付款方法:付钱时,先付1张面值与所需钱数较为接近的人民币,再付剩下的钱,这样付钱既简便又不容易出错。

  3.要点提示:要结合具体钱数确定付款方法。

四、元、角加减的计算方法

  1.相同单位的数才能相加减,单位不同的换算成统一单位后再相加减。如果算得的结果是10角以上,那么应将其转化为几元几角,满10角向元进1。

  2.知识巧记:人民币相加减,角加角、元加元;单位不同要互换,统一单位再计算。

  3.难点点拨:几十元里面有几个10元,几十元里面就有几十个1元。

  4.要点提示:在进行人民币的计算时,相同单位上的数才能相加减。

二年级数学知识点2

竖式除法

  1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。

  2、进一步体会除法的意义。

有余数的除法

  1、体会有余数除法的意义。

  2、积累正确的试商方法。

  4、能用竖式正确计算有余数除法,了解余数一定要比除数小。

  5、能运用有余数除法的知识解决一些简单的实际问题。

分苹果(竖式除法)

  知识点:

  1、掌握表内除法竖式的书写格式。

  2、掌握除法竖式的写法和每一步所表示的含义。

分橘子(有余数的除法(一))

  知识点:

  1、体会有余数除法的意义。

  2、会用竖式表示有余数的除法,了解余数一定要比除数小。

分草莓(有余数的除法(二))

  知识点:

  1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。

  2、能运用有余数除法的知识解决一些简单的实际问题。

租船(有余数除法的应用(一))

  知识点:

  灵活运用有余数的除法的有关知识解决生活中的简单实际问题。

派车(有余数除法的应用(二))

  知识点:

  灵活运用有余数除法及相关知识解决生活中的简单实际问题。

二年级数学知识点3

一. 分式

  ※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.

  整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么称 为分式,对于任意一个分式,分母都不能为零.

  ※2. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

  分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.

  ※3. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.

  ※4. 分子与分母没有公因式的分式,叫做最简分式.

二. 分式的乘除法法则

  两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)

三. 分式的加减法

  ※1. 分式与分数类似,也可以通分.

  根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  ※2. 分式的加减法:

  分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.

  (1)同分母的分式相加减,分母不变,把分子相加减;

  (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

  ※3. 概念内涵:

  通分的关键是确定最简分母,其方法如下:

  (1)最简公分母的系数,取各分母系数的最小公倍数;

  (2)最简公分母的字母,取各分母所有字母的最高次幂的积,

  (3)如果分母是多项式,则首先对多项式进行因式分解.

四. 分式方程

  ※1. 解分式方程的一般步骤:

  ①在方程的两边都乘以最简公分母,约去分母,化成整式方程;

  ②解这个整式方程;

  ③把整式方程的根代入原方程检验.

  ※2. 列分式方程解应用题的一般步骤:

  ①审清题意;

  ②设未知数;

  ③根据题意找相等关系,列出(分式)方程;

  ④解方程,并验根;

  ⑤写出答案.

二年级数学知识点4

  教学内容:

  北师大版小学数学二年级下册第六单元第65、66页。

  教材分析:

  二年级的孩子,已经积累了一定的生活经验,对直角有了初步的模糊的认识。本节课教材首先呈现三个学生身边的生活物品——数学书、黑板、三角板,用红线在物品上描出直角,让学生直观认识直角;通过“比一比,认一认”、“折一折,画一画”等多种活动,让学生进一步体会直角锐角钝角的特点,加强对这三种角的认识。

  教学目标:

  1、结合生活实例,经历从实际物体中抽象出直角的过程,直观认识直角,初步发展空间观念。

  2、会借助三角板辨认直角、锐角、钝角。

  3、培养学生的观察能力和动手操作能力。

  教学重点:

  认识直角、锐角和钝角,会借助三角板判断三种角。

  教学难点:

  掌握直角、锐角和钝角的画法。

  教学准备:

  课件、三角板、卡纸、活动角

  教学过程:

  一、复习引入

  1、师:同学们,上节课我们认识了图形王国中的一位新朋友,它是谁呀?

  生:角。

  师:你都知道哪些关于角的知识呢?

  生1:角有一个顶点,两条边。

  生2:角的大小与边的长短无关,与角的张口的大小有关,张口越大角就越大,张口越小角就越小。

  生3:画角方法:先画顶点,再从顶点向不同的方向画两条边。

  师:看来角真的是大家的老朋友了。

  2、课件出示图片。

  师:这些都是我们生活中常见的物品,你能找出它们里面藏着的角吗?(学生观察并指认。)

  课件演示从图中抽离出直角。

  (让学生经历从实际物品上描出直角的过程。)

  教师告诉学生:这些都是直角。

  二、探究新知

  1、认识直角

  (1)认识直角符号。

  (2)肢体语言表示直角。

  师:请大家闭上眼睛,你能想象出直角的样子吗?你能用身体做出直角吗?请学生上台展示。

  2、判断直角

  方法一:直观判断直角。

  方法二:借助三角板辨认。

  (设计意图:教师重点示范方法,通过用三角板中的直角比一比,这是对直接观察的一种验证,让学生感受到数学的严密性与准确性。)

  3、找一找直角。

  师:我们的教室哪里还有直角?说一说。

  比一比你找到的直角的大小,你发现了什么?

  (通过测量,得出结论:所有的直角一样大。)

  4、用活动角摆直角。

  5、认识锐角和钝角。

  师:比直角小的角,叫锐角;比直角大的角,叫钝角。

  6、感受三种角的大小关系。

  师:如果将这三种角按大小排队,怎么排?

  (学生独立思考完成,可以从大到小排列,也可以从小到大排列,最后集体交流。)

  三、游戏延伸

  游戏要求:说出老师用活动角变出的角的名字。

  (1)判断锐角。

  教师用活动角做出锐角,并逐渐变大,但仍然是锐角。

  得出:锐角有大有小,但再大都比直角小。

  (2)判断直角。

  变出直角,用三角板比一比。

  得出:直角都是这么大。

  (3)判断钝角。

  教师操作,得出结论:钝角有大有小,但再小都比直角大。

  四、动手操作。

  1、用纸折出三种角。

  2、画三种角。

  (教师示范,学生独立完成,巡视检查,发现问题及时指导。)

二年级数学知识点5

  1.表内除法的知识点:

  (1)理解*均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商?被除数÷商=除数?除数×商=被除数

  2.除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

  3.除法的性质

  一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)

  4.除法公式

  (1)被除数÷除数=商

  (2)被除数÷商=除数

  (3)除数×商=被除数

  5.被除数

  除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数

  6.除数:在除法算式中,除号后面的数叫做除数。

  例:8÷2=4则2为除数。8为被除数。除数不能为0,否则没有意义。

  7.商:在一个除法算式里,被除数÷除数=商+余数,进而推导得出:商×除数+余数=被除数。

  8.完全商

  当数a除以数b(非0)能除得尽时,这时的商叫完全商。如:9÷3=3,3就是完全商。

  9.不完全商

  如果数a除以数b(非零)除不尽,得到的商就是不完全商。如:10÷3=3......1,这里的3就是不完全商。

  10.被除数和商的关系

  被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。

  除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。

  11.2—6的乘法口诀

  2×2=4

  2×3=6

  3×3=9

  2×4=8

  3×4=12

  4×4=16

  2×5=10

  3×5=15

  4×5=20

  5×5=25

  2×6=12

  3×6=18

  4×6=24

  5×6=30

  6×6=36

  12.直角:几何原本中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。

  一个直角等于90度,符号:Rt∠

  13.几何中的锐角:大于0°小于90°(直角)的角。

  两个锐角相加不一定大于直角,但一定小于*角。

  14.钝角:钝角大于直角(90°)小于*角(180°)的角叫做钝角。

  15.*移:*移是指在*面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的*移运动,简称*移。*移不改变图形的形状和大小。*移可以不是水*的。

  16.旋转:在*面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。

  17.旋转的性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  (3)旋转前、后的图形全相等。

  18.旋转的三要素

  (1)旋转中心;

  (2)旋转方向;

  (3)旋转角度。

  注意:三要素中只要任意改变一个,图形就会不一样。

  旋转变换是由一个图形改变为另一个图形,在改变过程中,原图上所有的点都绕一个固定的点换同一方向,转动同一个角度

  19.表内除法的知识点:

  (1)理解*均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商?被除数÷商=除数?除数×商=被除数

  20.7、8、9的乘法口诀

  7×7=49

  7×8=56

  8×8=64

  7×9=63

  8×9=72

  9×9=81

  21.万以内的数的认识

  100=10个10(10个10相加的结果等于100)

  1000=10个100(10个100相加的结果等于1000)

  22.克

  克为质量单位,符号?g,相等于千分之一千克。一克的重量大约相于一立方厘米水在室温的质量,大约有一个万字夹的质量。

  1?吨?=?1,000,000?克?(一百万克)

  1?公斤(1千克)?=?1,000?克?(一千克)

  1?市斤?=?500克?(1?克?=?0.002市斤?)

  1?毫克?=?0.001?克?(1克=1000毫克)

  1?微克?=?0.000?001?克?(1克=微克)

  1?纳克?=?0.000?000?001?克(1克=000纳克)

  23.千克

  千克:(符号kg或㎏)为国际单位制中量度质量的基本单位,千克也是日常生活中最常使用的基本单位之一。

推荐阅读:

    想了解更多党团范文的资讯,请访问:公文范文
    下载文档

    看过《三年级数学知识点》的人还看了以下文章

    延伸阅读

    卖方:_________合同编号:_________ 买方:_________签订时间:_________根据《中华人民共和国合同法》、《中华人民共和国种子法》及有关规定,为明确双方的权利义务,经双方

    幼儿园教研组工作总结范文   今年教研组工作紧紧围绕提高教师教学水平,加强教师理论学习,将实践与理论结合,逐步优化幼儿一日生活等活动开展。在园长的指导支持下,在全园教师的

    各位需要写入党转正申请书的材料人员人员不用愁了,因为爱学范文网小编为大家推荐这一类的申请书。以下是精心搜集的材料员入党转正申请书范文,希望对你有帮助!材料员入党转正申请书范文篇一  尊敬的领导:  你

    银行年终工作总结篇1  20xx是我工作的第二个年头,回想一年来,虽然辛苦但有很价值,学到了很多书本上没有的东西。我努力提高业务水平,虚心向前辈及客户学习,得到了领导的赏识和支持,还被评为“行业先进工

    以下是为大家整理的关于通知家人吃团年饭的文章3篇,欢迎大家参考查阅!【篇1】通知家人吃团年饭各位同仁:大家新年好!辞旧岁迎新年,在各位兄弟姐妹的辛勤工作下,公司的业务发展蒸蒸日上,感谢全体同仁们在过去

    年终总结、半年总结和季度总结是最常见和通用的。以下是为大家整理的关于2023个人工作总结开头的文章3篇,欢迎品鉴!【篇1】2023个人工作总结开头1、工作认真负责,爱岗敬业,服从整体安排,形象良好;对

    与孩子同读书心得体会导语:和孩子一起读书看书,其实是一件非常幸福的事情。因为可以一步步见证孩子的成长,也可以让自己成长。下面是小编为你准备的与孩子读书心得体会,希望对你有帮助!篇一:与孩子读书心得体会

    签约客服上半年工作总结(精选)。时间的日历总是在不断的往下翻,为了让我们未来的工作更加井然有序,是时候对这半年的工作简单总结一下写份工作总结了。经常写工作总结,有助于我们提高工作的能力。写半年度工作总

    下面是小编为大家整理的2023年工作个人辞职申请书【五篇】(2023年),供大家参考。辞职申请书是个人离开原来的工作岗位时向单位领导或上级组织提请批准的一种申请书,是解除劳动合同关系的实用文体。今天的

    下面是小编为大家整理的2023年最新雪话题作文600(10篇)(全文),供大家参考。人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。