您好,欢迎来到爱学范文!

当前位置:爱学范文网>>实用资料>>概率论与数理统计习题解答

概率论与数理统计习题解答

标签:时间:

【综合文库】

概率论与数理统计习题参考答案(仅供参考) 第一章 第1页 (共57页)

第一章随机事件及其概率

1. 写出下列随机试验的样本空间:

(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;

(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度.解所求的样本空间如下

(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1}

(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}

2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生;

(2)A与B都发生,而C不发生; (3)A、B、C都发生; (4)A、B、C都不发生; (5)A、B、C不都发生;

(6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生.解所求的事件表示如下

(1)ABC

(2)ABC(6)A(3)ABC(4)ABC

(5)ABC(7)AB(8)ABBACCACBCBC3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB 表示什么?

(2)在什么条件下ABC=C成立?

(3)在什么条件下关系式C?B是正确的?

(4)在什么条件下A?B成立? 解所求的事件表示如下

(1)事件AB表示该生是三年级男生,但不是运动员.(2)当全校运动员都是三年级男生时,ABC=C成立.

(3)当全校运动员都是三年级学生时,关系式C?B是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,A?B成立.4.设P(A)=0.7,P(A-B)=0.3,试求P(AB) 解由于 A?B = A – AB,P(A)=0.7 所以

P(A?B) = P(A?AB) = P(A)??P(AB) = 0.3,

所以P(AB)=0.4, 故 P(AB) = 1?0.4 = 0.6.

5. 对事件A、B和C,已知P(A) = P(B)=P(C)= ,P(AB) = P(CB) = 0, P(AC)= 解由于ABC?AB,P(AB)?0,故P(ABC) = 0

则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)????0?0??0?141 求A、B、C中至少有一个发生的概率.8111444185 8

6. 设盒中有α只红球和b只白球,现从中随机地取出两只球,试求下列事件的概率:A={两球颜色相同},B={两球颜色不同}.

2解 由题意,基本事件总数为Aaa?Ab,有利于B的事件数为AaAb?AbAa?2AaAb,?b,有利于A的事件数为A2Aa?Ab2则P(A)?2Aa?b112AaAbP(B)?2

Aa?b22111111

7. 若10件产品中有件正品,3件次品,

(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率.解 (1)设A={取得三件次品}则

33C3A316 P(A)?3?. 或者P(A)?3?C10120A10720(2)设B={取到三个次品}, 则

概率论与数理统计习题参考答案(仅供参考) 第一章 第2页 (共57页)

3327 P(A)?3?.

101000

8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、

日、法三种语言中的一种,求:

(1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.

解设 A={此人会讲英语},B={此人会讲日语},C={此人会讲法语}

根据题意, 可得

(1) P(ABC)?P(AB)?P(ABC)?

(2) P(ABC)?P(AB)?P(ABC)

32923?? 100100100?P(A?B)?0?1?P(A?B) ?1?P(A)?P(B)?P(AB)

43353254?1????

100100100100

9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求: (1) 取到的都是白子的概率;

(2) 取到两颗白子,一颗黑子的概率;

(3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率.解

(1) 设A={取到的都是白子}则

3C814P(A)?3??0.255.

C1255 (2) 设B={取到两颗白子, 一颗黑子}

1C82C4P(B)??0.509.3C12 (3) 设C={取三颗子中至少的一颗黑子}

?0.7P(C)?1?P(A). 4

(4) 设D={取到三颗子颜色相同}

33C8?C4P(D)??0.273.3C12

10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)? (2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解

(1) 设A = {至少有一个人生日在7月1日}, 则

364500?0.746P(A)?1?P(A)?1?500365 (2)设所求的概率为P(B)

41C6?C1?1122?0.0073P(B)?126

11. 将C,C,E,E,I,N,S 7个字母随意排成一行,试求恰好排成SCIENCE的概率p.

227解由于两个C,两个E共有A2,因此有 A2种排法,而基本事件总数为A722A2A2p??0.000794 7A7

12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.

4解要4只都不配对,我们先取出4双,再从每一双中任取一只,共有C5?24中取法. 设A={4只手套都不配对},则有

C54?2480 P(A)?4?210C10

13. 一实习生用一台机器接连独立地制造三只同种零件,第i只零件是不合格的概率为pi?品的个数,则P(x=2)为多少?

解设Ai = {第i个零件不合格},i=1,2,3, 则P(Ai)?pi?所以 P(Ai)?1?pi?1 ,i=1,2,3,若以x表示零件中合格1?i1 1?ii 1?iP(x?2)?P(A1A2A3)?P(A1A2A3)?P(A1A2A3)

由于零件制造相互独立,有:

概率论与数理统计习题参考答案(仅供参考) 第一章 第3页 (共57页)

P(A1A2A3)?P(A1)P(A2)P(A3),P(A1A2A3)?P(A1)P(A2)P(A3) P(A1A2A3)?P(A1)P(A2)P(A3)

11112111311所以,P(x?2)??????????

23423423424

14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解设A={目标出现在射程内},B={射击击中目标},Bi ={第i次击中目标}, i=1,2.

则 P(A)=0.7,P(Bi|A)=0.6另外 B=B1+B2,由全概率公式

P(B)?P(AB)?P(AB)?P(AB)?P(A)P(B|A)

?P(A)P((B1?B2)|A)另外, 由于两次射击是独立的,故

P(B1B2|A)= P(B1|A) P(B2|A) = 0.36 由加法公式

P((B1+B2)|A)= P(B1|A)+ P(B2|A)-P(B1B2|A)=0.6+0.6-0.36=0.84

因此

P(B)= P(A)P((B1+B2)|A)=0.7×0.84 = 0.588

15. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从

某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解设Ai ={一批产品中有i件次品},i=0, 1, 2, 3, 4,B={任取10件检查出一件次品},

C={产品中次品不超两件},由题意

P(B|A0)?019C1C491P(B|A1)??10C505

P(B|A2)?CCC129481050?1649

19C3C4739P(B|A3)??10C509819C4C46988P(B|A1)??10C502303由于 A0, A1, A2, A3, A4构成了一个完备的事件组, 由全概率公式 P(B)??PA(iP)B(Ai|?)i?040. 196由Bayes公式

P(A0)P(B|A0)?0P(B) P(A1)P(B|A1)P(A?0.2551|B)?P(B)P(A2)P(B|A2)P(A2|B)??0.333P(B)P(A0|B)?故

P(C)??P(Ai|B)?0.588

i?02

16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现

三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).

解设B={三件都是好的},A1={损坏2%},A2={损坏10%}, A1={损坏90%},则A1, A2, A3是两两互斥, 且A1+ A2 +A3=Ω, P(A1)=0.8, P(A2)=0.15, P(A2)=0.05.

因此有P(B| A1) = 0.983, P(B| A2) = 0.903, P(B| A3) = 0.13, 由全概率公式

P(B)??P(Ai)P(B|Ai)i?13

?0.8?0.983?0.15?0.903?0.05?0.103?0.8624由Bayes公式,这批货物的损坏率为2%, 10%, 90%的概率分别为

P(Ai)PB(A|iP(A1|B)?P(B))0.8?0.398??0.87310.8624

P(Ai)PB(A|iP(A2|B)?P(B)P(Ai)PB(A|iP(A3|B)?P(B) )0.1?50.390??0.12680.8624)0.0?50.310??0.00010.8624由于P( A1|B) 远大于P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为0.2.

17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和

5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求:

概率论与数理统计习题参考答案(仅供参考) 第一章 第4页 (共57页)

(1)一次通过验收的概率α;

(2)通过验收的箱中确定无残次品的概率β.

解设Hi={箱中实际有的次品数}, i?0,1,2, A={通过验收}

则 P(H0)=0.8, P(H1)=0.15,P(H2)=0.05, 那么有:

P(A|H0)?1,4C235P(A|H1)?4?,C2464C2295P(A|H2)?4?C24138

(1)由全概率公式

??P(A)??P(Hi)P(A|Hi)?0.96

i?02(2)由Bayes公式 得

??P(Hi|A)?P(H0)P(A|H0)0.8?1??0.83

P(A)0.9618. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻

(1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?

解设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1?p=0.9, 故

2(1) P)2(0.9)3?0.0729 1?P5(2)?C5(0.1(2) P 2?P5(3)?P5(4)?P5(5)345?C5(0.1)3(0.9)2?C5(0.1)4(0.9)1?C5(0.1)5(0.9)0?0.00856

概率论与数理统计习题参考答案(仅供参考) 第二章 第5页 (共57页)

第二章 随机变量及其分布

1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X的分律.解X的分布率如下表所示:

X 0 1 2 p 28/45 16/45 1/45

2. 进行某种试验,设试验成功的概率为

31,失败的概率为,以X表示试验首次成功所44需试验的次数,试写出X的分布律,并计算X取偶数的概率.

解X的分布律为:

?1?P(X?k)????4?k?1?3???,k?1,2,3,?4?

X取偶数的概率:

?1??3?P{X为偶数}??P(X?2k)???????4?k=1k=1?4? k1?1?1??3????3?16?51?1k=1?16?163. 从5个数1,2,3,4,5中任取三个为数x1,x2,x3.求:

X=max (x1,x2,x3)的分布律及P(X≤4); Y=min (x1,x2,x3)的分布律及P(Y>3).

3解基本事件总数为:C5?10,

??2k?1(1)X的分布律为:

X 3 4 5

p 0.1 0.3 0.6

P(X≤4)=P(3)+P(4)=0.4 (2)Y的分布律为

Y 1 2 3

p 0.6 0.3 0.1

P(X>3) =0

?k4. C应取何值,函数f(k) =C,k=1,2,?,λ>0成为分布律?

k!解由题意,

?f(x)?1, 即

k?1?

推荐阅读:

    想了解更多实用资料的资讯,请访问:实用资料
    下载文档

    看过《概率论与数理统计习题解答》的人还看了以下文章

    延伸阅读

    我国新形势下在社会综合治理工作中,解决和化解各类人民内部矛盾的一种最温和、最人性、最直面、最便捷以及最传统的工作方法。以下是由爱学范文大全为大家整理的用枫桥经验创新群众工作,希望对你有帮助,如果你喜

    实习工作总结篇1  为期两周的金工实习结束了,就像军训一样,有说不出的的辛苦,也有忘不掉的欢乐。  这一周开始上课了,没有了白天实习的劳累,但看着机电专业的同学也跟我们前两周一样去实习,心中也免不了有

    幼儿园教师的大班工作总结篇1  时间总是不遗余力的向前奔去,留下了主人在暗自思量。  ——引语  一、思想工作  我承认:本学期的思想工作不笃定,表现在思想指导自我的行动力上缺乏强迫性、在思想指导自我

    合同编号:____________买方:__________________卖方:__________________日期:__________________鉴于招标人为获得所有临床需要使用的___

    本页是爱学范文网最新发布的《20xx年军训两天心得体会5篇》的详细范文参考文章,觉得有用就收藏了,这里给大家转摘到爱学范文网。军训是锤炼学生品质、增强学生组织纪律观念、提升综合素质的重要载体。下面小编

    班主任是学校中全面负责一个班学生的思想、学习、健康和生活等工作的教师,他是一个班的组织者、领导者和教育者,也是一个班中全体任课教师教学、教育工作的协调者..以下是小编整理的德育副校长开学班主任会讲话【

    出差学习心得13篇当在某些事情上我们有很深的体会时,可以将其记录在心得体会中,这样可以帮助我们总结以往思想、工作和学习。那么心得体会怎么写才能感染读者呢?下面是小编帮大家整理的出差学习心得,欢迎阅读,希

    分析报告是一种比较常用的文体。有市场分析报告、行业分析报告、经济形势分析报告、社会问题分析报告等等。分析报告的标题一般有两种形式:一是公文式,另一种是新闻报道式。以下是小编收集整理的关于20xx年省委

    劲舞团符号1、【suo⌒呓】2、【iove均】3、【呐谁玩累了就回来吧】4、【暗中呼喊

    八年级语文《雪》教案范文5篇在这篇优美的散文诗中,作者为我们描绘了两幅各具特点的图景,江南雪的滋润美艳,朔方雪的蓬勃奋飞,让我们领略雪这一纯洁自然之物的独特风采,另外散文诗灵活的形式,优美的语言,也让