您好,欢迎来到爱学范文!

当前位置:爱学范文网>>实用资料>>高中数学德育渗透教案【九篇】

高中数学德育渗透教案【九篇】

标签:
时间:

教案是教师根据课程标准、教学大纲和教材的要求,结合学生的实际情况,以课时或课题为单位,设计和安排的一种实践性教学文件,以顺利有效地开展教学活动。 以下是为大家整理的关于高中数学德育渗透教案的文章9篇 ,欢迎品鉴!

高中数学德育渗透教案篇1

  教学准备

  教学目标

  运用充分条件、必要条件和充要条件

  教学重难点

  运用充分条件、必要条件和充要条件

  教学过程

一、基础知识

  (一)充分条件、必要条件和充要条件

  1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。

  2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。

  3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。

  (二)充要条件的判断

  1若成立则A是B成立的充分条件,B是A成立的必要条件。

  2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。

  3.若成立则A、B互为充要条件。

  证明A是B的充要条件,分两步:

  _

  (1)充分性:把A当作已知条件,结合命题的前提条件推出B;

  (2)必要性:把B当作已知条件,结合命题的前提条件推出A。

 二、范例选讲

  例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?

  (1)在△ABC中,p:A>Bq:BC>AC;

  (2)对于实数x、y,p:x+y≠8q:x≠2或y≠6;

  (3)在△ABC中,p:SinA>SinBq:tanA>tanB;

  (4)已知x、y∈R,p:(x-1)2+(y-2)2=0q:(x-1)(y-2)=0

  解:(1)p是q的充要条件(2)p是q的充分不必要条件

  (3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件

  练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是(C)

  A、x<0B、x<0或x>4C、│x-1│>1D、│x-2│>3

  例2.填空题

  (3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的条件.

  答案:(1)充分条件(2)充要、必要不充分(3)A=>B<=>C=>D故填充分。

  练习2(变式2)若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的()

  A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分又不必要条件

  例4.(证明充要条件)设x、y∈R,求证:|x+y|=|x|+∣y∣成立的充要条件是xy≥0.

  证明:先证必要性:即|x+y|=|x|+∣y∣成立则xy≥0,

  由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴xy≥0;

  再证充分性即:xy≥0则|x+y|=|x|+∣y∣

  若xy≥0即xy>0或xy=0

  下面分类证明

  (Ⅰ)若x>0,y>0则|x+y|=x+y=|x|+∣y∣

  (Ⅱ)若x<0,y<0则|x+y|=(-x)+(-y)=|x|+∣y∣

  (Ⅲ)若xy=0,不妨设x=0则|x+y|=∣y∣=|x|+∣y∣

  综上所述:|x+y|=|x|+∣y∣

  ∴|x+y|=|x|+∣y∣成立的充要条件是xy≥0.

  例5.已知抛物线y=-x2+mx-1点A(3,0)B(0,3),求抛物线与线段AB有两个不同交点的充要条件.

  解:线段AB:y=-x+3(0≤x≤3)-----------(1)

  抛物线:y=-x2+mx-1---------------(2)

  (1)代入(2)得:x2-(1+m)x+4=0--------(3)

  抛物线y=-x2+mx-1与线段AB有两个不同交点,等价于方程(3)在[0,3]上有两个不同的解.

高中数学德育渗透教案篇2

  教学目的:掌握圆的标准方程,并能解决与之有关的问题

  教学重点:圆的标准方程及有关运用

  教学难点:标准方程的灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:⒈说出下列圆的方程

  ⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x-2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2-6x+4y+12=0

  ⒊判断3x-4y-10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

  练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

高中数学德育渗透教案篇3

  《充分条件与必要条件》

  教学准备

  教学目标

  运用充分条件、必要条件和充要条件

  教学重难点

  运用充分条件、必要条件和充要条件

  教学过程

  一、基础知识

  (一)充分条件、必要条件和充要条件

  1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。

  2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。

  3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。

  (二)充要条件的判断

  1若成立则A是B成立的充分条件,B是A成立的必要条件。

  2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。

  3.若成立则A、B互为充要条件。

  证明A是B的充要条件,分两步:

  (1)充分性:把A当作已知条件,结合命题的前提条件推出B;

  (2)必要性:把B当作已知条件,结合命题的前提条件推出A。

  二、范例选讲

  例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?

  (1)在△ABC中,p:A>Bq:BC>AC;

  (2)对于实数x、y,p:x+y≠8q:x≠2或y≠6;

  (3)在△ABC中,p:SinA>SinBq:tanA>tanB;

  (4)已知x、y∈R,p:(x-1)2+(y-2)2=0q:(x-1)(y-2)=0

  解:(1)p是q的充要条件(2)p是q的充分不必要条件

  (3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件

  练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是(C)

  A、x<0B、x<0或x>4C、│x-1│>1D、│x-2│>3

  例2.填空题

  (3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的条件.

  答案:(1)充分条件(2)充要、必要不充分(3)A=>B<=>C=>D故填充分。

  练习2(变式2)若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的()

  A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分又不必要条件

  例4.(证明充要条件)设x、y∈R,求证:|x+y|=|x|+∣y∣成立的充要条件是xy≥0.

  证明:先证必要性:即|x+y|=|x|+∣y∣成立则xy≥0,

  由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴xy≥0;

  再证充分性即:xy≥0则|x+y|=|x|+∣y∣

  若xy≥0即xy>0或xy=0

  下面分类证明

  (Ⅰ)若x>0,y>0则|x+y|=x+y=|x|+∣y∣

  (Ⅱ)若x<0,y<0则|x+y|=(-x)+(-y)=|x|+∣y∣

  (Ⅲ)若xy=0,不妨设x=0则|x+y|=∣y∣=|x|+∣y∣

  综上所述:|x+y|=|x|+∣y∣

  ∴|x+y|=|x|+∣y∣成立的充要条件是xy≥0.

  例5.已知抛物线y=-x2+mx-1点A(3,0)B(0,3),求抛物线与线段AB有两个不同交点的充要条件.

  解:线段AB:y=-x+3(0≤x≤3)-----------(1)

  抛物线:y=-x2+mx-1---------------(2)

  (1)代入(2)得:x2-(1+m)x+4=0--------(3)

  抛物线y=-x2+mx-1与线段AB有两个不同交点,等价于方程(3)在[0,3]上有两个不同的解.

高中数学德育渗透教案篇4

  【课题名称】

  《等差数列》的导入

  【授课年级】

  高中二年级

  【教学重点】

  理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。

  【教学难点】

  等差数列的性质、等差数列“等差”特点的理解,

  【教具准备】多媒体课件、投影仪

  【三维目标】

  ㈠知识目标:

  了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;

  ㈡能力目标:

  通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;

  ㈢情感目标:

  通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。

  【教学过程】

  导入新课

  师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:

  (1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()

  (2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?

  (3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?

  (4)10072,10144,10216,(),10360

  请同学们回答以上的四个问题

  生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。

  师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。

  生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.

  师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。

  生1:相邻的两项的差都等于同一个常数。

  师:很好!那作差是否有顺序?是否可以颠倒?

  生2:作差的顺序是后项减去前项,不能颠倒!

  师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。

  推进新课

  等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。

  师:有哪个同学知道定义中的关键字是什么?

  生2:“从第二项起”和“同一个常数”

高中数学德育渗透教案篇5

  新课程改革要求我们努力构建以德育为核心,以培养学生的创新精神和实践能力为重点,以学习方式的改变为特征,以应用现代信息技术为标志的课程体系。作为自然基础学科的数学,将打破传统的教学方式,更加注重数学与实际的联系,更加注重数学的趣味性,也更加关注学生在数学学习中所表现出来的情感、态度、价值观。因此,如何在数学教学中找到德育的切入点,进行德育渗透,是我们值得研究和思考的问题,是学校进行道德教育的基本内容。德育渗透“渗”的途径怎样?该运用哪些手段和方法?这里,我结合自己的教学实践谈几点认识,以期抛砖引玉。

  一、结合教学内容适时进行爱国主义教育。

  高中数学教材的例题、习题、注释、阅读材料中,有不少进行德育教育有说服力的数学材料。因此我们要将数学教材,作为融知识传授、能力培养和思想品德教育为一体的综合性载体,深入挖掘其中的德育因素,促进对学生的德育教育。

  根据教材内容适时向学生介绍我国古今数学领域的杰出成就和数学家的事迹,可培养学生的民族自尊心和自豪感,增强热爱社会主义祖国的思想感情。例如:公元五世纪,我国博学多才的数学家祖日恒(祖冲之之子),在实践的基础上总结出著名的体积公理,幂势既同,则积不容异。一千一百多年后的17世纪意大利数学家卡发雷利(1595—1647)在他的名著《连续不可分几何》中才提出这个公理。关于二项式定理,公元1261年,我国数学家杨辉在他著的《详解九章算法》中提出了著名的“杨辉三角形”,比法国数学家帕斯卡(1623—1662)在1653年才开始使用这个“三角形”早四百多年……在芝加哥一家博物馆中,有一张引人注目的名单,名单上开列的都是当今世界著名的数学家,在这当中有一个中国人的名字?——华罗庚,他是自学成才的数学家。苏步青教授是从放牛娃到著名数学家,他在微分几何方面有很高的水平,在国际上有威望,他写的《一般空间微分几何》一书,获得国家科学奖。在数学皇冠上,有一颗耀眼的明珠,那就是著名的“哥德巴赫猜想”。几百年来,在伸向这颗明珠的无数双手中,有一双手距离明珠最近,那就是我国著名数学家陈景润的一双勤奋的手,我们xxx第九中学的数学家陆家羲……;在国际数学奥赛中,我国中学生自从组队参赛以来,都夺得辉煌成就,特别是1997年的38届国际数学奥赛,我国中学生夺得六枚金牌,总分第一,压倒群芳。但是,1998年7月的第39届国际数学奥赛中国大陆却未组队参赛,这是为什么?因为竞赛地点在台北,有台湾的同胞参赛,世界上只有一个中国……,这些素材,我们在课堂教学中适时给学生介绍,都能很好地培养学生的爱国主义思想,树立民族自尊心和自信心,增强学生的主人翁思想和社会责任感,激励他们刻苦学习,敢于争先,为国争光。

 二、数学是一门知识体系严谨,逻辑性很强的自然科学。

在数学教学中,应当重视数学思想方法的教学,这些数学思想在科学思想方面将给人以启迪,可以培养学生的科学态度与科学习惯,使人们目的明确,思维清晰,行为准确,善于实践,勇于创新。无论我们的学生将来从事何种职业,数学思想都将使他们终身受益。

  比如:数学公理是人们在长期生产实践中总结出的经验。如两点间的连线,线段最短,蚂蚁缘槐走捷径,犬击目标径直奔。真理是客观存在的,公理自在人间,做人要守公德,教学生学知识也要同时教学生学会做人。数学要发展,有些早期的概念要拓广,就需要一些限制、规定,如a≠0时,我们规定a0=1,若无此规定,指数的运算就无法推广;人类要生存发展,也需要一些规定与限制,国有国法,家有家规,中学生就应该遵纪守法,自觉遵守《中学生守则》,遵守学校校规,明礼诚信,信守社会公德,做一个德智体美劳全面发展的好学生。

  又如:数学美在于他的对称性、和谐性。正四面体的顶点在底面的射影是底面中心,它的任何一个面都是正三角形,正三角形的四心合一(外心、内心、垂心、重心),它的任何一个面都可作为底面,此时它们仍然是一个三棱锥。圆锥曲线的分类以其离心率e的取值为标准,圆的离心率为0,反证法的难点在于无中生有,制造矛盾,否定假设……我们在教学过程中,可以旁敲侧击,教育学生在学校、年级、班级内部,要安定团结,不要制造矛盾,闹分裂,不要扩大离心率,大家要一条心,学习正四面体的随意性与适应性,将来无论党把我们安排在哪里,都是一个堂堂正正的中国人,寓德育于谈笑间。

  数学的推理是严密的,数的计算是准确的。新学期伊始,大家都想排个好座位,一班60人,同学们无妨计算一下有多少种不同座次排法,60!这是一个天文数字,60!>1060,一天排几百次,一辈子也排不清,只能宏观调控,约定几条总的是有利于大家的原则排座次,从而培养学生大局观念,体会到党和政府对国民经济的发展为什么要进行宏观调控。

 三、精心编拟数学题组,适机进行德育教育。

  例:(旧版本课本题)设1980年底我国人口以10亿计算

  ①如果我国人口每年比上年平均递增2%,那么2000年底达到多少?

  ②要使2000年底我国人口不超过12亿,那么,每年比上年平均递增率最高是多少?

  计划生育是我国的基本国策,每一位公民都应当知晓,通过这些信息,可以使学生了解我国人口的基本情况,唤起控制人口的忧患意识。

  但现阶段又出现了与此相矛盾的新问题:老龄化问题、养老金问题、就业与延迟退休问题等等又如何解决?这些都需要学生了解,使学生有忧患意识,眼光具有前瞻性。

  数学教学中,更应渗透思想教育及市场经济内容,在遵循教学大纲、教学要求的前提下,适时地将社会变革中敏感的市场经济变化中最显著的内容补充进去,融汇进教学中,诸如增长率、物价、造价、利润、储蓄、规划、生态平衡.德育渗透不只局限在课堂上,还应与实践活动有机结合,我们可以适当开展一些数学活动课和数学主题活动。通过调查、阅读等途径搜集、占有资料,提出问题,分析问题,最终使问题得到解决。不仅智力得到发展,学生还在思维方式,行为规范等方面得到锻炼,受到思想品德教育和美育熏陶。寓教育于学习之中,寓教育于活动之中。例如,在学“统计”这一内容时,开展“热爱环境”的实践活动,让学生统计他们的家里一天要扔多少个塑料袋?一周要扔多少个?一个月要扔多少个?假设以一个家庭每天用5个塑料袋计算,我们全校这么多名学生,一天要扔多少个?一周要扔多少个?一个月要扔多少个?现在的塑料它是一种不易分解的物质,这样,再过几年,想象一下,我们的地球将会是什么样子?这样,学生通过统计、计算,着实地认识到使用塑料袋对环境的危害,他们就会自觉自愿地站在抵抗使用塑料袋的行列里来,减少白色污染。

  在讲授《椭圆及其标准方程》之前,我们可以先给学生讲述2008年9月25号,我国‘神舟’七号载人飞船在中国酒泉卫星发射中心成功发射升空发射到2012年6月16日的神舟九号载人飞船升空与天宫对接,标志着我国航天科技取得又一次跨越式胜利的伟大创举,再引入所要讲的课题。可以让学生了解我国的科学技术水平在世界上的领先地位,既调动了学生学习数学的积极性,又激年他们立志为献身于祖国的社会主义现代化建设而努力奋斗的民族热情。在教与学中,经常渗透一些新鲜血液,数学教学才会具有生命力,才会使学生潜移默化地受到热爱社会主义制度、热爱社会主义祖国的思想教育,才会促使学生关心社会、了解社会、适应社会,团结友善,勤俭自强,敬业奉献。提高学生解决问题的能力,才会激励他们为祖国建设、祖国的繁荣昌盛贡献青春。梁启超在一九○○年二月十日《少年中国说》中说到:“少年智则国智,少年富则国富,少年强则国强,少年独立则国独立,少年自由则国自由,少年进步则国进步,少年胜于欧洲,则国胜于欧洲,少年雄于地球,则国雄于地球”。告诫学生以史为鉴,奋发图强,为中华之崛起而奋斗。

  当然,数学教育的德育渗透不仅仅是以上几个方面,它贯穿于整个教育过程中。它与我们的各个教学环节和内容有着千丝万缕的联系。只要我们多做有心人,善于发现与引导,寓德育于数学教学的每个环节之中,就一定能达到“润物细无声”的教育效果,也只有这样我们才能培养出“有道德、有理想、有文化、有纪律”的一代新人,才能站在至高处,总览全局,以不变应万变,才能达到“会当凌绝顶,一览众山小”的境界。

高中数学德育渗透教案篇6

  新课程的培养目标要求我们:“要使学生具有爱国主义、集体主义精神;热爱社会主义、遵守国家法律和社会公德,逐步形成正确的世界观、人生观、价值观;具有社会主义责任感,努力为人民服务,使学生成为有理想、有道德、有文化、有纪律的一代新人。”这充分说明了德育教育必须贯穿于各科教学之中,数学这一学科也不例外。那么怎样在数学教学中进行德育渗透呢?我认为作为一位数学老师,应该结合学生的实际、学校的实际和学科的特点,按照《中小学德育大纲》的要求进行教学,“寓德育于各科教学内容和教学过程之中,是每位教师的职责”。以下是我在把数学教学和德育渗透相结合的过程中所获得的认识谈一下。

一、数学教学内容中的德育渗透

  数学课堂的德育渗透首当其冲的是来自教材。从表面上看,数学教材里的内容好象只是一些刻板的规律,要从中找到思想教育的素材是不容易的。事实上,数学不是思想品德,当然就不会包含专门的德育内容,但只要你用心去挖掘,数学教材里还是有很多内容可以作为德育教育的素材的。

  (一)民族情感

  利用教材挖掘德育素材。在数学教材中,思想教育内容并不是明确提出的。这就需要教师认真钻研教材,充分挖掘其潜在的德育因素,以史育人。例如:关于二项式定理,公元1261年,我国数学家杨辉在他著的《详解九章算法》中提出了著名的“杨辉三角形”,而法国数学家巴期卡在1653年才开始使用,我国比外国早四百多年。苏步青教授写的《一般空间微分几何》一书,获得国家科学奖。陈景润成功地证明了数论中“(1+2)”定理,被誉为“陈氏定理”等等在相应的教学章节进行讲述,使学生了解我国古今的伟大数学成就,培养学生的民族自豪感,增强为祖国建设事业刻苦学习的责任感和自觉性。

  (二)寓教于美

  在数学教学中应努力改变过去那种沉闷的只注重知识传授的教学方式,自觉地引进美学机制,按照美的规律去选择、去创造,让学生在学习数学的同时也欣赏数学,让学生在学习中体验美、享受数学美,以此激发学生追求数学美的意愿,提高对数学美的鉴赏能力,陶冶高尚的审美情操。如方程的曲线和曲线的方程之间的关系是静中有动,动中有静,深刻地反映了数学的静态美与动态美……。通过在数学教学中引导学生体味其中的美、发现其中的美,特别是若能利用数学美解答数学问题,定能激发学生学习的欲望,将会大大提高学生学习的兴趣。

  二、数学教学过程中的德育渗透

  在教学过程中进行德育渗透。传统的教学方法只重视基础知识教学,基本技能训练和能力的培养。随着时代的发展,数学教学应“与时俱进”,不仅要发扬优良传统,还要注意学生的“个性充分自由发展”;不仅要教、学互动,还要引导学生讨论,建立学生之间的互助协作关系,培养他们团结合作的能力。

  (一)建立自信

  数学教育的一个主要目的是帮助学生树立自信心。让学生主动参与教学的全过程,给学生创造成功的机会,让学生体验成功的愉悦,培养学习数学的自信心。创造良好的课堂文化氛围,形成和谐的人际关系。

  (二)勇于创新

  数学创新意识主要是指对自然界和社会中的数学现象具有好奇心,不断追求新知、独立思考,会从数学的角度发现和提出问题,并用数学方法加以探索、研究和解决。

  培养学生的创新意识和能力与数学教学的质量息息相关,而数学教育也可为发展学生的创新能力提供良好环境。首先,数学最有利于训练学生的思维,这是创性思维发展的基础,第二,问题是数学的心脏,层出不穷的问题为人们的创造思维提供了丰富的资源,第三,数学是一门有着广泛应用的学科,如何将其他学科与数学联系起来,如何给现实问题找合适的数学模型等都包含创新。因而提高我们的创新意识与创新能力就显得尤为重要了。

  (三)合作学习

  数学的学习渠道是多方面的,学生数学知识的掌握不单单靠教师的讲授,小组合作就是一种很好的辅助学习方式。给每个小组一定的探究问题,在大家的充分参与下,有利于学生对知识的思考过程进行再现;而且对于不爱发言的学生,也在小范围内给了他一定的表现空间。合作学习给学生思维的发展创造了空间,容易在合作的同时,更加努力地完善自己,形成你追我赶的局面。这种方法使学生不仅能积极主动的学习,还能有效地指导他人学习,使学生可以从中更深刻的体验到成功的乐趣。例在讲椭圆方程()时让学生对不同的a,b取值来进行分组,列表、再用描点法画出其对应的函数图象,观察函数图像变化,学生基于对实验现象的观察给出猜想图象的趋势,每小组派代表作口头回答。老师对每个发言的同学给予评价,学生纷纷发表各自的意见,大胆阐明自己的猜想。这热烈的场面是以往课堂上难以见到的,学会彼此认可,互相信任,当同伴出现错误时应帮助他们纠正;交流时,要有条理,用准确的语言表达;学会倾听别人的发言,彼此接纳和支持,有不同的意见,要等别人说完以后再进行补充或反驳,不要打断别人的回答;学会正确地评价自己和他人,敢于承认自身不足,虚心向他人请教,乐于分享他人成功的喜悦,让合作学习真正地有效进行。

  三、数学教学行为中的德育渗透

  (一)人格魅力

  古语说;“其身正,不令则行,其身不正,虽令不从。”德育过程既是晓之以理,动之以情,见之以行的过程,也是情感陶冶和潜移默化的过程。教师的精神风貌、一言一行对学生的影响是巨大的,也是直接的。尤其是中学生,他们更容易模仿大人。教师的板书、语言、神态、仪表、动作等都会对学生产生无形的影响。高尚的人格是每一个为师者送给学生的最好的礼物。为了上好每一堂数学课,老师课前做好充分准备,采取灵活多样的教学手段,课上课下不放松对学困生的帮助,撒满快乐的阳光。这样学生不仅能在快乐的氛围中学到知识,而且在心里还会产生一种对教师的敬佩之情,喜爱之情。做学生成长旅程中的榜样。

  (二)适应社会

  恩格斯指出:“数学是辩证的辅助工具和表现形式,连初等数学也充满着矛盾。”对立统一的观点在数学体系中到处可以找到印证。如数学中的“正与负”、“动与静”、“数与形”、“直与曲”,“有理数与无理数”,“实数与虚数”,“相等与不等”、“常数与变量”、“有限与无限”等反映了既对立又统一的唯物辩证法观点。学习数学要求严谨、认真,在教学中应有意加强这方面的训练及培养,在平面内一动点到两定点的距离之和等于定长的轨迹是椭圆等知识(可在木制的小黑板上,拿两个小图钉,用细线固定其两端,再用粉笔拉紧细线,在黑板上画弧线即画出一个椭圆),增强学生动手动脑能力。数学教育不仅让学生深刻地掌握了数学知识,而且认识到世界上的事物是普遍联系、相互转化的,我们不仅能用静止的观点去观察世界,更能用矛盾分析的观点全面地看待周围事物,从而引导学生对学习、生活有较高层次的理解,培养他们适应和改造环境的能力,优化心理品质,在展示数学的神奇和美妙过程中,让辩证唯物主义观点悄悄地注入学生的心田,提高学习兴趣,为高三学习做准备,更为将来走入社会做好知识及心里准备。

  德育教育应贯穿于整个数学教育当中,只要教师认真观察学生、挖掘教材、用心设计教学,使德育教育溶于数学内容和教学过程之中,就可提高教学效果,也有利于学生身心健康的成长,推进素质教育真正而有效进行。

高中数学德育渗透教案篇7

  德育,简单说来就是教会学生符合社会规范的为人处事的道理,它的影响大到构建和谐社会的总目标,小到学生的生活、学习、成长、成才过程中的每个细节。因此,各学科教学中渗透德育内容不容忽视。培根曾说过:“播种行为,收获习惯;播种习惯,收获性格;播种性格,收获人生。”

  数学是一门自然科学,其思想教育、爱国主义教育、辩证唯物主义教育都是贯穿于整个中学教学内容之中。作为一名数学教师,不仅是传授知识、培养能力,更要在教学中竭力挖掘教材内在的思想性,充分利用数学的观点理解和阐述教材;适时地,有机地对学生渗透思想教育,这不仅可激发学生内在的自我进取意识,而且可使学生重视自我修养,逐渐形成坚定的、正确的政治立场,正确的价值观和崇高的道德观,树立远大理想,真正充实、完善整个内心世界,更为重要的是通过德育教育可使学生树立民族自豪感和民族自信心;树立祖国利益高于一切、集体利益高于个人利益的思想;使学生有艰苦创业、勇于献身的精神,以达到教书育人的目的。为此就数学教育中如何渗透德育,谈点浅显的认识,以求抛砖引玉。

 一、挖掘教材内容蕴涵的数学史是渗透德育的重要形式。

数学教材中处处渗透着中华民族的优秀文化基因和贡献,只要我们认真挖掘和提炼,便可达到“寓道于教”的目的。如:在《立体几何》的祖恒原理的教学中,我们不仅要使学生明确原理的内容以其含意和作用,而且还要告诉学生这一重要原理的发现是我们的古代数学家祖恒早在公元五世纪通过实践总结出来的,并使用这一原理证明了“球”的体积公式。在欧洲直到七世纪才被意大利的卡发雷利发现,落后了我国一千二百多年,这是我们中华民族的骄傲。又如:在讲“极限”概念时,可用刘微的“割圆术”、庄子的“一尺之棰,日取其半,万世不竭”的论述,介绍中国古代极限的思想,这样不仅形象地描述了抽象的极限,更重要的是突显了我国劳动人民取得的伟大成就。再如:在《二项式定理》的教学中可介绍具有特殊结构规律的“杨辉三角”,这是我国数学史上又一光辉的成就。在我国宋朝数学家杨辉1261年所著的《详解九章算术》一书中就有记载,要比法国帕斯卡早四百多年,它和勾股定理、圆周率的计算等数学成就一样,反映了我国光辉灿烂文化,显示了我国劳动人民的智慧和才能。总之,我们只要深入教材内容,就能随时随地发现进行德育教育的素材,激发学生的爱国主义热情,培养学生学习数学的兴趣,增强学生学好数学的自觉性和自信心,激活学生的民族自豪感和责任感。

  二、挖掘教材中的辩证因素是渗透德育的关键。

  恩格斯指出:“数学是辩证的辅助工具和表现方式。”在数学教学中,我们既要注重传授数学基础知识,又要注意培养学生的辩证思维能力。我们要深入挖掘课本知识,用辩证唯物主义的观点阐述教学内容。注意适时、适量、适度地对学生进行辩证唯物主义思想教育,使他们形成辩证思考问题的能力,树立科学的世界观。如:在讲授《三垂线定理》时,引导学生注意“平面内的这条直线”可以在平面内任意平移,使学生进一步认识事物是处于不断的运动和变化之中。立体几何中直线与平面的诸多关系都可以用运动、变化的观点来教学,使同学们逐步认识“动”与“静”的辩证关系。又如:讲“反证法”证明题目时,一方面要使学生明确反证法证题的步骤和方法,另一方面要用辩证法的观点去分析那些直接难以奏效的问题,为什么可用反证法解?是因为反证法是在假设结论不成立的条件下进行推理的,这实际上是把结论的否命题当作一个新的条件使用,从而解决了问题中“条件不足”的矛盾,有利于矛盾双方的转化。解题的过程实质是揭示矛盾、转化矛盾、解决矛盾的过程,进而逐步使同学们树立普遍联系和矛盾可以相互转化的辩证思想。

  可见,数学教学中处处体现和闪现着辩证唯物主义思想和辩证法的光辉。在教学过程中教师应不失时机地给学生予以揭示、引导,使学生对数学知识加深理解和巩固,不断培养学生的辩证唯物主义思想和立场。

三、突破教材重、难点的教学是渗透德育的主要形式。

  中学阶段是学生成长和发育的重要时期,也是学生良好品德形成的关键阶段,在教学过程中应注意学生对概念的叙述、理解和习题的解法过程,要求学生养成严谨、周密、扎实和一丝不苟的良好思维习惯,要培养学生勇于和善于克服困难的品质,遇到难懂难理解的概念,启发学生对概念从不同角度去思考、去分析、去理解,遇到难题,引导学生分散难点,化难为易,各个击破,教给学生灵活应用知识和方法,教育和引导学生树立知难而进,勇闯难关的学习思想。数学解题方法和解题过程,同样也要求有较强的严密的逻辑性,尤其是难度较大的题,如果学生不具备坚定的信心,顽强的毅力,是不容易顺利解出来的,所以在教学过程中要求学生象著名数学家华罗庚、陈景润那样,既要有严谨慎密的作风,要有独立思考、不畏艰难,勇于探索的精神。造就学生实事求是、虚心好学和具有严谨科学态度的优秀品质。

 四、良好的德育是渗透德育教育的基础。

  教师端正的教态、豁达的性格、宽广的心胸是学生学习、生活的镜子,做人的示范。教师精炼、生动、幽默、风趣的语言使课堂活跃,并能让学生心目中的老师有水平和有能力上好每一节课。教师准确的专业术语使学生更加尊重老师,并能对科学知识的学习一丝不苟,端正对科学研究的态度。教师规范的书写和精心的课堂设计体现教师的工作态度和对工作的高度负责,使学生从老师的示范中感到一种责任感和使命感,从而使学生形成良好的道德品质。

  总之,在数学教学中进行德育渗透,必须同知识传授、学生能力培养以及学生的学习、生活习惯融为一体,要从数学教材内在的思想性出发,做到德育教育与数学教学有机地结合,充分利用数学教材内容所蕴涵的德育思想和方法,培养学生有一个良好的道德品质和思想品质,以及具有坚定的政治立场,真正使学生得到全面发展,以达到学会做人,学会做事的目的。

高中数学德育渗透教案篇8

  一、教材分析:

  1、教材的地位与作用。

  本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。

  在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的情景的概率打下基础。

  2、重点与难点。

  重点:对概率意义的理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

  难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

 二、目的分析:

  知识与技能:掌握用频率预测概率和用列举法求概率方法。

  过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

  情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

三、教法、学法分析:

  引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

 四、教学过程分析:

  1、引导学生探究

  精心设计问题一,学生经过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节资料理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。

  2、归纳概括

  学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。

  引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题本事,又让学生明确用列举法求概率这一简便快捷方法的合理性。

  3、举例应用

  ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。

  ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。

  4、深化发展

  ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。

  ⑵让学生设计活动资料,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新本事。

高中数学德育渗透教案篇9

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  (4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。

  教学建议

 一、知识结构

  二、重点难点分析

  本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。

  组合与组合数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。

  解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).

三、教法设计

  1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系.

  2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.

  为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d4个元素中取出3个元素的排列树图与组合树图分别为:

  排列树图

  由排列树图得到,从a,b,c,d取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

  组合树图

  由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).

  从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图.

  学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式.

  3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题.

  对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播.对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择最佳方案,总结解题规律.对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高.

  4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是

  这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的.

  对定理2,可启发学生从下面问题的讨论得出.从n个不同元素,,…,里每次取出m个不同的元素(),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有的;(3)在这些组合里,有多少个是含有的;(4)从上面的结果,可以得出一个怎样的公式.在此基础上引出定理2.

  对于,和一样,是一种规定.而学生常常误以为是推算出来的,因此,教学时要讲清楚.

  教学设计示例

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  【归纳概括建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.如前面思考题:6个火车站中甲站乙站和乙站甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从个不同元素中取出个元素的所有组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为.

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影]与的关系如何?

  (师生活动)共同探讨.求从个不同元素中取出个元素的排列数,可分为以下两步:

  第1步,先求出从这个不同元素中取出个元素的组合数为;

  第2步,求每一个组合中个元素的全排列数为.

  根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  【例题示范探求方法】

  (教师活动)打出字幕,给出示范,指导训练.

  [字幕]例1列举从4个元素中任取2个元素的所有组合.

  例2计算:(1);(2).

  (学生活动)板演、示范.

  (教师活动)讲评并指出用两种方法计算例2的第2小题.

  [字幕]例3已知,求的所有值.

  (学生活动)思考分析.

  解首先,根据组合的定义,有

  ①

  其次,由原不等式转化为

  即

  解得②

  综合①、②,得,即

  [点评]这是组合数公式的应用,关键是公式的选择.

  设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

  【反馈练习学会应用】

  (教师活动)给出练习,学生解答,教师点评.

  [课堂练习]课本P99练习第2,5,6题.

  [补充练习]

  [字幕]1.计算:

  2.已知,求.

  (学生活动)板演、解答.

  设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

  【点评矫正交流提高】

  (教师活动)依照学生的板演,给予指正并总结.

  补充练习答案:

  1.解:原式:

  2.解:由题设得

  整理化简得,

  解之,得或(因,舍去),

  所以,所求

  [字幕]小结:

  1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证.

  2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件.

  (学生活动)交流讨论,总结记录.

  设计意图:由“实践——认识——一实践”的认识论,教学时抓住“学习—一练习——反馈———小结”这些环节,使教学目标得以强化和落实.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题103第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在的边上除顶点外有5个点,在边上有4个点,由这些点(包括)能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

  作业参考答案

  2.解;设有男同学人,则有女同学人,依题意有,由此解得或或2.即男同学有5人或6人,女同学相应为3人或2人.

  3.能组成(注意不能用点为顶点)个四边形,个三角形.

  探究活动

  同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

  解设四人分别为甲、乙、丙、丁,可从多种角度来解.

  解法一可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

  甲拿乙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丁制作的贺卡时,则贺卡有3种分配方法.

  由加法原理得,贺卡分配方法有3+3+3=9种.

  解法二可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

  正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有(种).

  逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为1.故符合题设要求的取法共有(种).

  说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法.

  (2)设集合,如果S中元素的一个排列满足,则称该排列为S的一个错位排列.本例就属错位排列问题.如将S的所有错位排列数记为,则有如下三个计算公式(李宇襄编著《组合数学》,北京师范大学出版社出版):

推荐阅读:

    想了解更多实用资料的资讯,请访问:实用资料
    下载文档

    看过《高中数学德育渗透教案【九篇】》的人还看了以下文章

    延伸阅读

    棉花定购合同供方(甲方):_________需方(乙方):_________根据国家现行收购棉花政策,经双方协商一致,签订本合同,共同遵守执行。第一条 定购的棉花名称:_________;品级:___

    读《海底两万里》有感   《海底两万里》以巴黎自然博物馆的阿龙纳斯教授为视角,讲述了他与自己的仆人康塞尔和加拿大人尼德.兰,跟随一艘名叫“鹦

    ——教着有心,学者得益随着新课程的实施和课程教学改革的不断深入,教育创新的意识已深入到数学课堂教学的每一个环节,像如何提高课堂教学效率、改进教学方法、培养学生的思维能力和创新能力。可是,数学作业的设计

    【爱学范文网 - 读书活动总结】在平时举办完活动后可以对这次活动做个总结,找出活动中有哪些不足,在下次活动中把这些不足改掉,从而保证下次活动办得更好。下面是由爱学范文网小编为大家整理的“2022小学生

    述职报告语言要朴实,不能够为了升职加薪对自己进行没有分寸的吹捧。爱学范文今天为大家精心准备了员工述职3个月转正报告,希望对大家有所帮助!  员工述职3个月转正报告  三个月的试用期转眼就要过去了。这

    古典语录是指对那些富有哲理和特殊意义的词语的记录,通常以正式文体使用。以下是为大家整理的关于我们长大了父母却老了的经典语录的文章3篇,欢迎品鉴!第1篇:我们长大了父母却老了的经典语录1、爸爸的脸很瘦,

    春天是指早春和早春尤其是在春节期间。从春天开始,时间序列就进入了春天。无论是在自然还是在人们的头脑中春天&rdquo它意味着风是温暖的,太阳是温暖的,它意味着万

    2023第三季度预备党员思想汇报范文3篇来自热点推荐。光阴似箭,现在已经是第三季度,又到了写思想汇报的时候了。下面小编给大家带来2023第三季度预备党员思想汇报范文,供大家参考!2023第三季度预

    实习报告参考格式(通用28篇)实习报告参考格式篇1时间如白驹过隙,让人有些措手不及。一年的临床实习结束,我心里充满不舍和感恩。成为一个医德高尚、医技高超的医师一直是我的梦想,这是一篇实习医师实习报告,

    2023春开学典礼校长讲话稿(26篇)2023春开学典礼校长讲话稿篇1老师们、同学们新春伊始,万象更新。踏着春天的脚步,我们又回到了美丽的校园,步入了新学期,开始了新一年的播种与耕耘。首先,我代表