初二数学学习心得感想(精选3篇)
初二数学学习心得感想 篇1
《图形的位似》教学反思
《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。
但是,这节课也存在很多不足之处:
1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。
2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。
3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。
4、小组合作时个别学生没有真正动起来。
5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。
6、学生证明位似图形时证明过程还是不够严谨。
7、缺少了位似图形在生活中的应用。
改进措施:
1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。
2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。
3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。
4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。
5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。
6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。
7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。
在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。
今天有关 今天小编就为大家精心整理了一篇有关英语口语的相关内容,以便帮助大家更好的复习。
《图形的位似》教学反思
《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。
但是,这节课也存在很多不足之处:
1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。
2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。
3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。
4、小组合作时个别学生没有真正动起来。
5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。
6、学生证明位似图形时证明过程还是不够严谨。
7、缺少了位似图形在生活中的应用。
改进措施:
1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。
2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。
3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。
4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。
5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。
6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。
7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。
在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。
初二数学学习心得感想 篇2
通过几年的高中数学的教学,我感觉到很多学生重视数学,想学好数学。也有很多家长告诉老师他的孩子在初中数学是如何的好现在怎么就落后了呢。作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力.然而并非人人都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟头就栽在数学上。众多初中学习的成功者沦为高中学习的失败者,主要原因有以下几个方面.
1.学习被动.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.没有真正理解所学内容。在初中的数学教学中,教师讲解详细,常把许多问题的解决建立为固定的思维模式,而且各类题型反复练习,学生渐渐养成了“依葫芦画瓢”的抄录式的学习方法。而高中数学要求学生勤于思考,善于思考,掌握数学思想方法,善于归纳总结规律,在思维的灵活性、可延伸性、创造性方面提出了较高的要求。但学生的思维能力的发展和思维方式的转换有一个循序渐进的过程,这就给高一数学的学习形成了思维障碍。
2.学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.
3.基础重视不够.知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”.
4.进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.
高中学生不仅仅要“想学”,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动.针对学生学习中出现的上述情况,我有些建议:
1、 树立学好高中数学的信心。
进入高中就必须树立正确的学习目标和远大的理想。学生可以阅读一些数学历史,体会数学家的创造所经历的种种挫折、数学家成长的故事和他们在科学技术进步中的卓越贡献,也可请高二、高三的优秀学生讲讲他们学习数学的方法,以此激励自己积极思维,勇于进取,培养学习数学的兴趣,树立学好数学的信心。
2、培养良好学习习惯。
良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面.
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力.但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志.
课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上.
上课是理解和掌握基本知识、基本技能和基本方法的关键环节.“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼.
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”.
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”.
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神,做错的作业再做一遍.对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由“活”到“悟”.
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情.
3、培养优秀的数学思维品质,提高数学解决问题的能力
与初中数学相比高中数学在思维形式的灵活性、可拓展性等方面的要求较高。所以学习中加强思维训练,积极开展思维活动,努力克服思维惰性,提高自身的分析问题解决问题的能力。
4.循序渐进,防止急躁
由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振.针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
5.研究学科特点,寻找最佳学习方法
数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的.
6.重视辅导,化解分化点
如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点.对易分化的地方应当采取多次反复理解,重视辅导,将出现的错误提出来和同学、老师议一议,充分理解题目的思维过程,通过变式练习,提高自己的鉴赏能力,以达到灵活掌握知识、运用知识的目的。
实际上新的学习必然会有一些障碍,高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。要了解学习数学困难的原因,采取正确的措施,发挥自己的主体作用,学会分析问题、研究问题,这样在培养创造性思维能力的同时,也提高了学习数学的兴趣,使自己更有效、更顺利的投入高中阶段的学习。
初二数学学习心得感想 篇3
数学概念是小学数学知识的基本要素。小学数学是由许多概念、法则、性质等组成的确定体系。学生的学习在某种意义上来说是改组或重新组建认识结构的过程。因此,教学中要根据学生认识规律,着眼于揭示知识之间的内在联系。首先教师要注意学生已有的知识和经验,有意识地把新知识建立在学生已有的知识水平之上。学生对新概念的建立,有的是根据自己的生活实际进行观察总结,而有的则是根据旧知识进行推理的结果,引入新概念大致有以下几种途径:
1.形象直观地引入
所谓形象直观地引入概念,就是通过学生所熟悉的生活事例,以及生动形象的比喻,提出问题,引入概念 ;或者采用教具、模型、图表、幻灯演示及让学生动手操作等增加学生的感性认识,然后逐步抽象,引入概念 。如,在三年级教学三角形的特性时,可以让学生想想,在实际生活中你见过哪些地方用到了“三角形”? 根据学生的回答,教师提出问题,自行车的三角架,支撑房顶的梁架,电线杆上的三角架等,它们为什么都要 做成三角形的而不做成四边形的呢?进而揭示三角形具有稳定性的特性。这样,利用学生的生活实际和他们所 熟悉的一些生活实际中的事物或事例,从中获得感性认识,在此基础上引入概念,是符合儿童认知规律的。
2、从生活实例引入
数学源于生活。结合生活实例引入概念是数学概念教学的一个有效途径。它可以使数学由“陌生”变为“熟悉”,由“严肃”变为“亲切”,从而使学生愿意接近数学。例如:“直线和线段”的教学。可呈现四组图片让学生观察。图片一:妈妈织毛衣的场景,突出散乱在地上的绕来绕去的毛线。图片二:斜拉桥上一根根斜拉的钢索。图片三:一个女孩打电话,用手指绕着弯弯曲曲的电话线。图片四:建筑工地上用绳子拴住重物往上拉的画面,突出笔直的钢丝绳。然后提问:“刚才你在图片上看到了什么?你能给这些线分分类吗?你有什么办法使这些线变直?”这些熟悉的生活现象不仅唤起了学生对生活的回忆,更激起了学生探索欲望,为学生提供了“做数学”的机会。
3从.计算引入。
当通过计算能揭示数与形的某些内在矛盾或本质属性时,可以从计算引入概念。 如,教学“互为倒数”这个概念时,教师先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11× 11/9……,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这 样的乘积是1 的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。
4、从创设情景中引入概念。
在引入概念之前,老师要积极创设一种情境,使学生感到问题是真实的、具体的、有趣的、有意义的、富有挑战性的,以激起学生强烈的求知欲,唤起学生的积极思维。
如教学“圆的认识”时,可以这样进行:“同学们,我们平时所见的车轮都是什么样的?”学生会肯定地 回答:“都是圆形的。”“方的行不行?”“那怎么行,方的怎么滚动啊?”“这样的行吗?”教师随手在黑 板上画一椭圆形问。“也不行,颠得厉害。”教师再问:“为什么圆的就行了呢?”当学生积极思考时,教师 揭示课题:这节课,我们就来学习解决这个问题的方法。同时板书:圆的认识。这样,一石激起千层浪,短短 几句话,就调动起学生积极探求知识的动力,激起学生学习的情感,使学生一上课就进入学习的最佳状态,取 得事半功倍的效果。
5、以旧概念的复习引入新概念。
一个概念并不是孤立的,它总是处在一定的概念系统中,处在与其它概念的相互联系中,学生的学习都是通过概念同化习得新概念的。学习复杂概念之前,先学习更一般更简单的概念(即上位概念),以这个上位概念作为新概念的的先行组织者,联系学生已学过的有关概念来阐明新概念的是教学的重要方法之一。如利用整除的概念阐明约数与倍数的概念。在公约数与公倍数的概念中,再添上“最大”、“最小”的限制,而得出最大公约数和最小公倍数的概念。
实践表明,用先前的一个概念推导出新的概念,这样的既能使学生较好地理解新的概念,又能使知识结构形成的更完善,学生掌握得更牢固,更重要的是帮助学生树立起联系的思维方法,形成逻辑思维能力。
查看全文
false